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AN EXPONENTIAL FINITE DIFFERENCE TECHNIQUE FOR SOLVING

PARTIAL DIFFERENTIAL EQUATIONS

Robert F. Handschuh
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U.S. Army Aviation Research and Technology Activity - AVSCOM

Lewis Research Center
Cleveland, Ohio 44135

ABSTRACT

An exponential finite difference algorithm, as first presented by
Bhattacharya for one-dimensional unsteady state, heat conduction in
Cartesian coordinates, has been extended. The finite difference
algorithm developed was used to solve the diffusion equation in
one-dimensional cylindrical coordinates and applied to two- and
three-dimensional problems in Cartesian coordinates. The method was
also used to solve nonlinear partial differential equations in one
(Burger's equation) and two (Boundary Layer equations) dimensional
Cartesian coordinates. Predicted results were compared to exact
solutions where available, or to results obtained by other numerical
methods. It was found that the exponential finite difference method
produced results that were more accurate than those obtained by other
numerical methods, especially during the initial transient portion of
the solution. Other applications made using the exponential finite
difference technique included unsteady one-dimensional heat transfer
with temperature varying thermal conductivity and the development of
the temperature field in a laminar Couette flow.
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NOMENCLATURE

aj,bj,c i Thomas algorithm variables

B Blot number

Cp material specific heat, 3/kg - K (Btu/Ibm • OF)

h convection heat transfer coefficient, WI/N 2 .*C
(Btu/ft 2 - hr - OF)

i,J,k nodal location in x,y, and z spatial coordinate directions
respectively

30,31 Bessel functions of zero and first order

k thermal conductivity, WIN • °C (Btu/hr • *F • ft)

kq thermal conductivity at ith position, nth time step,
WIN • OC (Btu/hr - OF • ft)

L distance between plates, M (ft)

N dimensionless drive number

m number of sub-intervals

N number of nodes in a spatial direction

n time step position designation

q heat flux, W/N2 (Btu/hr . ft2 )

r spatial coordinate; cylindrical coordinates, K (ft)

T temperature, °C (°F)

t time, sec

At time between time steps n and n + 1

U Couette flow velocity, N/s (ft/s)

xIyz spatial coordinates, Cartesian coordinates, M (ft)

Ax,ay,Az distance between nodal positions in the x,y, and z spatial
directions

thermal diffusivity, N2/s (ft
2/s)

B rate of thermal conductivity variation

at/pCp(aX)2; (W/N . *C)-I ((Btu/hr *F O ft2 )-1 )

v
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Kconstant

xt  constant used in exponential finite difference method with
temperature varying thermal conductivity

ax  finite difference operator

mth elgenvalue of Bessel function
n n

)'i Vi Thomas algorithm variables dependent on time step and spatial

location

amplification factor

kinematic viscosity, M2/s (ft2/s)

p material density, kg/N 3 (lbm/ft 3)

91.*,e separation variables

(At dimensionless timelAX)
2
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1. INTRODUCTION

Partial differential equations have many important applications in

the fields of engineering and physics. Many exact solutions exist

depending on, the partial differential equation, the boundary

conditions, and the number of spatial dimensions under consideration

(1]. Coordinate systems other than Cartesian, more than one spatial

dimension, and the boundary conditions all can pose problems that are

either extremely difficult or impossible, to solve by analytical

methods. Numerical methods thusly become the only possible solution

method if the problem complexity is not to be compromised. Typically

the ability of a particular method to predict a field variable is

tested by numerically solving a problem for which a known exact

solution is available. The ability of the method to predict the exact

results is a measure of the confidence that can placed in a solution

where no exact solution exists or experimental test results are

unavailable.

The objective of the work to be presented is to extend, expand,

and compare an explicit exponential finite difference technique first

proposed by Bhattacharya [2]. To date the method has only been used

for one-dimensional unsteady-state, heat transfer problems in

Cartesian coordinates.

The method has been expanded, in this report, to allow application

to a variety of problems. The exponential method will be extended here

to the case of one-dimensional unsteady heat transfer in cylindrical

1A
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coordinates. Also, it was used in two- and three-dimensional unsteady

heat condition. Other cases of interest that were solved using this

approach include temperature varying conductivity in one-dimensional

heat transfer and the development of the temperature field in laminar

Couette flow. Solutions of the above cases were either compared to

exact solutions or to results obtained by alternative numerical

techniques.

One final application of the exponential finite difference

algorithm was made for nonlinear partial differential equations.

Burger's equation along with the boundary layer equations are solved

using the exponential method. Thus, a demonstration of how to apply

the method to nonlinear problems is described.

The results of all the different cases considered in this study

indicated that the exponential technique produced results that were

more accurate than those found through other numerical techniques. All

exponential computer codes and those of the other competing numerical

analysis were run in double precision on either the IBM-3033 or the

Cray X-MP mainframes. The computer codes developed for the exponential

finite difference method and other numerical techniques used for

comparison are contained in the appendix of this report.

69=Qwam '- v ._ ,,. .- ..,z.,..- ,, ...



II. - ANALYSIS

The Exponential Finite Difference Algorithm

An explicit exponential finite difference algorithm as first

derived by Bhattacharya [2] will now be presented. The method can be

applied to many of the partial differential equations found in

engineering and physics. The diffusion equation as it applies to

conduction heat transfer will be used in the demonstration that

follows. In reference [2-3] the method was derived for one-dimensional

conduction heat transfer in Cartesian coordinates. To show how the

method can be extended, a derivation parallel to the one presented in

reference [2] will be made for unsteady state heat conduction in

two-dimensions. Equations of this type are typically solved

numerically by a variety of methods [4].

For two-dimensional heat transfer in Cartesian coordinates with

constant material properties, the appropriate partial differential

equation is [5]:

(_ 12
aT a T + T
at (1)

To initiate the exponential method a product solution is assumed and is

written as:

T(x,y,t) = *(x)*(y)e(t) (2)

The initial conditions of the problem are assumed to be

T(xy,O) = f(xy) (3)
e(O) = 1 ]

,3
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Now taking the appropriate deviatives of Eq. (2) with respect to the

independent variables,yields

aT a a2T 2 a2T A2(4)
i-t = *e d-A ; - = +e _ (4)

ax2  ax2  ay2  ay2

Substituting Eq. (4) into Eq. (1) produces:

.ae - e L a2  *
at ax2  ay2

Dividing both sides of the above by .e gives:

1 ae I 2 + 1 (5)
_0 i . ax 2  * ay 2 =

It can be seen that the variables have been separated. Consequently

both sides of Eq. (5) must equal a constant, say, K.

Now examining only the left hand side of Eq. (5),

1 ae
e at =-

Multiplying the left-hand side of this equation by 4*/** gives:

" ae
e at = - K

which can be rewritten from Eq. (4) as:

1 aT
T(x,yt) at -

Direct integration produces:

T = c2 exp I-. Oct

Next, the initial consition is used to evaluate the integration constant

giving c2 = T(xy,O); thus,

T(x,y,t) = T(x,y,O) exp I- it$ (6)

Returning to Eq. (5) only this time, the right-hand side is examined;
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{ ax 2  ~ay 2

Multiply this by and obtain
e"

-K-

ax2 e+ ay2  -

or

ax + ay2

Equations (2) and (4) are now used which results in:

aj a2T +a T (7)T ax 2  ay 2

The temperature appearing as a coefficient is replaced using its

initial value so that,

+ T(8)
T(x,y,O) ax2 2

The partial derivative terms can be written in central difference form

about a node (iJ) as (6]:
innn

2 Tn +T 2T
a T_ +lJ -1.

ax2  (Ax)2

(9)
2 n n n

a 2TT .j+1 .1-1 .1

ay2  (Ay) 2

Thus Eq. (8) becomes:

n n 2T n n n 2 Tn
_ TI-I.J + T IJ T1 1,J+I Ti 1J- 1  .1
- 2 )2T (Ax) (Ay) "

(10) j1
rw ,, x ; , -- ,. ,, ", 7 , , . , . ,2.:...,.., .- , v. .. , . - ..... ,....
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Now Eq. (10) is substituted to replace the constant K in the

exponential of Eq. (6). Making the appropriate substitutions results

in:

T n n 

T =~ .T exp Gt - 2T
i~j ij , T n [A)2

T n + T n - 2T n

+ 2~ - '(Ay) 2

If the grid spacing is constant (ax = Ay), then the above equation

can be written as:

[n n + Tn + T n - n
Tt T e x p  -+ ii+,
ijAk)2 T(Ax n

Note the At that appears in the above is the time elapsed between

time steps n and n+l. The temperatures on the right-hand side are

the four nearest neighbors to the ijth node (see Fig. 1).

In keeping with the notation derived by Bhattacharya [2], the term

aAt- 2 (12)
(Ax)

is called the dimensionless time step and

Tn  n n Tn n

n i+l.J TIij Ti j+1  I -1  T.1 (13)i T n

Tij

is called the dimensionless drive number. Thus, Eq. (11) can be

rewritten rather compactly as:

Tn~l = n n
T T. exp(QM (14)

It was found [2] that an improvement in the solution at the n+l

time step at node (ij) can be made If the time step is d'vided into
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a number of equal length time sub-intervals. The method of time step

sub-intervals can be described as follows. Let us assume that the time

interval will be divided into three intervals including the one at the

end of the time step (Fig. 2). Now returning to Eq. (14), and

evaluating at the n+l/3 time step, results in:
Tn+ll3 Tn exP nM 1

TJ = Tn exp 2 M n (15)

Proceeding from the n+1/3 time step to the n+2/3 time step:

Tn+2/3 Tn+l/3 ex _ n+1/3 (T T x j (16)

i~j ij i

Finally, the temperature can be written at the n+l time step:

Tn+l =n+2/3 exp n2/3 (1)ij ,j 3 ij17

Now substituting Eq. (15) into Eq. (16) and substitution of Eq. (16)

into Eq. (17), produces:
Tnil ~ Q nI {Q , I exp2/3

1,l= T1, exp Mi , exp Mn+/3 exp Mn+2/3 (18)

or

T1, = Tn,3 exp [, + Mn,/ + Mn+2/3 (19)

where the M's are then evaluated at the sub-time intervals and then

summed for calculation of "T" at the n+l time step. Equation (19)

can be written more generally as:

m
n+l n m n+p/(m+l)T =T exp + 1 " (20)

p=O

In reference [2], it was shown that for heat transfer applications, the

time step can be subdivided as follows:
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S1 . heat transfer coefficient -
M- (21)+ I . . . finite heat transfer coefficient

with flanking nodes outside

calculation domain.

N = number of nodes in one of the coordinate directions.

The procedure necessary to determine the dimensionless drive

numbers will now be described. Since the method is an explicit

technique, all Information is known from the previous time step or from

the previous time sub-interval. The effort is the centered around

calculation of the drive numbers at the requested number of time

sub-intervals for each of the spatial positions (nodes).

The calculation procedure is shown in Fig. (3). Because the drive

numbers are evaluated at sub-time intervals, the temperature (or any

other field variable) must also be known at these sub-time intervals.

Therefore, the temperature field is calculated at each sub-time

interval, and in turn is used to calculate the next drive number. The

drive numbers for each node are summed for all the sub-time interval

steps and then used to predict the field variable at the next complete

time step. This results in a computer storage requirement of 4(N),

where N is the number of nodes.

Extension To One-Dimensional Cylindrical Coordinates

In the previous section, the exponential finite difference

technique was extended to two-dimensions. Now the procedure will be

considered in another coordinate system. In particular the method will

next be applied to radial one-dimensional, unsteady heat transfer.

The goverring unsteady diffusion equation for a material with

constant properties is:

or e
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pC A= k I Ar A-
P a(22)

aT aT
at la 2 +r

Assume that the temperature can be written as the product:

T(r,t) = *(r)e(t) (23)

The initial conditions are

T(r,O) = f(r) ; e(O) = 1 (24)

Now taking the appropriate derivatives of Eq. (23); results in

aT ae A -=e 0 t a -=e et (25)
at at; ar ar' ar2  ar2

Substituting Eq. (25) into Eq. (23) yields:

a ar2  r or

Dividing both sides by #e brings:

1 at =  + & + (26)
Sar2 rarJ2

It can be seen that the variables have been separated. Thus, both

sides of Eq. (26) must equal a constant, K. Now using the time

dependent side of the above , i.e.,

1 ae
e at - K

and multiplying this by 0#/e produces:

1 aT
T at -

Integrating for a particular value of the radial position "r" gives:

T = C1 exp J- )t
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Next the initial condition is used and the equation can be written as:

T(r,t) = T(r,O) exp (- Kt) (27)

Returning to Eq. (26) and using the radial side of the equation, we have

Multiplying by es/e*, the equation can be rewritten as:

_ A_ (28)ar 2  Tr a-r 
(

Incorporating the initial condition,

T(r,O) L + =] (29)

Next the partial derivatives are replaced using central finite

differences [4]:

2 Tn +Tn -2T
2T 1+1 i-_ I T

ar2  (Ar)2

(30)
Tn Tn

aT 1+1 i-1
ar 2 Ar

Substituting Eq. (30) into Eq. (29):

-T +1 +. I-n- 2n) (Tn+_ T n

g[( + -2T) = (T- PC~l] (31)

Equation (31) is used to replace the constant, - K in Eq. (27), i.e.,

Tn+l n L A t  (T+I I- + ( +l 1l
TT = T1 exp T / r 2 Ar/I
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Rearranging this brings:

Tn+l Tn xpa At T+ 1  + 1 (32)(Ar)2  Tn i T )

Equation (32) states that the temperature at the 1th radial

position at the (n+l) time step is found from the product of

temperature at ith position, nth time step and the exponential

term that is composed of a dimensionless time step:

a - 2 (33)

(Ar)

and a dimensionless drive number:

n (T T~ + Tn -2T7)( n -Tn
+1 )-1 - Ar i+ 1 -T )-1 (34)MI "n +2r n

It should be noted that this drive number applies to the interior nodes

(r1 # 0). For the node at r = 0 the dimensionless drive number

becomes:

n 2(T n~ - T n)
n = n (35)ST n

Finally Eq. (32) can be written in a compact form as

Tn+l = T exp 9lMn (36)

The sub-time interval evaluation for Eq. (36) is the same as that found

in the two-dimensional Cartesian form as shown earlier.

Stability of the Exponential Finite Difference Method

With few exceptions, explicit finite difference procedures for

solving partial differential equations are inherently unstable, unless

certain numerical conditons are satisfied. These conditions take the

V 'W '% ~~ ,%' -. v~vw~vy.'.,7F:
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form of a grid size and/or time step requirement written in terms of

parameters of the given problem. If these stability conditions are not

met, the solution will diverge, often rather drastically. On the other

hand, the stability requirements can make explicit methods impractical

for a particular application by requiring an unrealistically small grid

or time step. Nonetheless, these conditions must be known prior to the

use of any explicit finite difference procedure.

There are a variety of methods that have been used to establish

the stability constraints of a finite difference procedure: some are

very elementary, some quite involved. In essence, the methods seek to

find an expression for the amplification factor which is the ratio of

the current solution result to that in the previous step. If the

absolute value of the ratio is less than one the method is stable.

Determination of the amplification factor for the exponential finite

difference method is particularly convenient, as has been shown in

[2]. For the one-dimensional cylindrical coordinate case, the

amplification factor can be readily defined as

Tr T +l + T - 2Tn (T n - T n
-x a,- At il T1_I1  A___+_____n2n 2r n
T1  (A) Tti T

(37)

or from Eq. (32) for an interior node:

n n

t = n = exp QM n (38)
T a

So for stability to exist as at and Ar approach zero:
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1rn I I < 1 (39)
at -* 0
Ar-~0

To satisfy this requirement the exponent in the eponential of

Eq. (38) must obviously be less than or equal to zero. Since the

components that make up 9 in that exponent are all positive, this

implies that the dimensionless drive number will dictate whether or not

the stability criteria is met. For the cylindrical coordinate case the

dimensionless drive number must satisfy:

(- + T- - 2T.)+ , (+1- T 0I

Multiplying by Tn this becomes:

n  +n 2Tn) +r (Tn~- T l) < 0

Define 0 E Ar/2r i and rearrange to get

(I + 83)T +I  + (I - O) _ < 2T n

(41)

n I n + (1 B)TnT1 2 (+ Ti+ l + l-BT-I

Equation (41) needs to be satisfied otherwise an unstable

condition can exist. In Eq. (41) as Ar # 0, or equivalently 8 0,

the stability condition becomes:

n 1 n Tn
Ti > 2 Ti+ + i-(42)

Also for one-dimensional cylindrical coordinate case, the node at

r - 0 has a different stability criteria because the node at i+1

does not exist. Since the radial derivative of the field variable must

equal zero at r = 0. In finite difference terms this can be realized

I.
f,
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n n

by requiring that T 1  T 1  at this node. Thus, at the

origin, Eq. (42) becomes

n Tn (43)
Ti - Ti_ 1

As stated by Bhattacharya [2], the dimensionless drive number is

the determining factor whether or not the stability criteria is met.

However, the dimensionless time, if made large enough, could cause the

solution to become unstable. Since time sub-interval division is used,

the total dimensionless time step Q could become quite large. From

[2] it was recommended that the dimensionless time step be chosen to

satisfy the following:

< 0.5 (44)

where m is the number of time step sub-intervals involved in the

calculations. If Q - 5, for example, then m would have to be

greater than or equal to 9 i.e., nine sub-intervals would be required.

From Eq. (21) with infinite heat transfer coefficent, a minimum of 20

nodes would be needed.

Another useful comparison to be made is the one-node model as used

in Refs. [2] and [7] where the value of the dependent variable at the

surrounding nodes is set equal to zero. For the one-node model, as

stated in Ref. [7], the exponential finite difference and exact are the

same (Fig. 4). This figure indicates that the exponential solution

remains stable as Q is increased.

- R P~p~
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Effect of Initial and Boundary Conditions on the Exponential

Finite Difference Method

In this section the effect of boundary conditions on the

exponential finite difference technique will be investigated. Boundary

conditions that are typical of heat transfer applications will be

considered. The conditions to be presented are: (1) finite heat

transfer coefficient (mixed condition), (2) infinite heat transfer

coefficient (Dirichlet condition), (3) constant heat flux (Neumann

condition), and (4) time varying. Initial conditions, where the field

variable is equal to zero, will also be discussed.

Finite Heat Transfer Coefficient

For this boundary condition, the method used in reference (2] will

be utilized. Numerical implementation of the boundary condition

requires that a node be placed outside the solid In the surrounding

medium. This external node will be used in the finite difference

equation at the solid surface. One-dimensional heat transfer in a

cylinder (T - T(r,t)) will be used to demonstrate the procedure.

Using the exponential finite difference method for T (r,t), it

was found earlier (Eq. (36)) that

T n+l Tn exp Qn) (45)

V .0,
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where the dimensionless time is given by

a At

(Ar)
2

and the dimensionless drive number by: (46)

T n + T - 1 Tn i
Tn 2rI

TT T

The thermal condition at the surface is found by equating the

conductive and convective heat fluxes at the surface:

- k ATr=R ;h (TIr. T (47)

Using the node numbering as shown in Fig. 5 and a central difference to

express the deverative, Eq. (47) becomes:

-T.) =-k (2 &r) (48)n

Solving for Tn, the temperature of the external node, yields

,, n =Tn +2hkAr (T -T n) (9,nTn*, 2(49)
0 2 k 1TT)

Let B - h Ar/k (Blot number [8]), thus Eq. (49) is written:
n n n n

Tn = T2 + 2BTn- 28T (50)

Now that an expression for the temperature at the external node is

known, it can be used in the expression for the temperature at the

surface node. This results in:

l = Tl exp a n

where (51)

T1 n T n +2BT + T2 -n 2BT n(Tn- Tn)

- T n ] T [

U qT l

. . * % % .- I
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and the drive number can be further simplified to:

S n2 T n (1 + B)T n + BT ] T -T n(n T2 1 TI + T rB 1 (52)

1  T R

Infinite heat transfer coefficient

If the heat transfer coefficient in Eq. (47) is placed on the

left-hand side of the equation and then allowed to become infinite, it

is seen that the surface temperature will equal the temperature of the

surroundings. Thus, the boundary condition in which h 4- Is

identical to that in which a boundary temperature is held constant. In

the calculation procedure, these isothermal boundary nodes are only

needed for calculation of the temperature field at the surrounding

nodes. For example in a two-dimensional square grid with a total of

121 nodes calculation would be reduced to a total of 81 nodes if the

temperature is specified for all four boundaries.

Constant Heat Flux

For a constant heat flux applied to the boundary surface, the same

procedure as was used in the finite heat transfer coefficient case will

be utilized. The condition at the surface for one-dimensional

cylindrical coordinates is given by:

q = k , (53)
Ar Ir=R

An external node is placed outside the solid as was done earlier.

Equation (53) can then be written

T('o k 2Ar) (54)

S.
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Solving for the external node temperature results in:

n 2q Ar n
T0 k , T2 (55)

At the surface the exponential finite difference equation is:

Tn + Tn2

-1 = T1 exp 0 2 1 +1 T Tn 2R

and substituting in Eq. (55):
+a~ +1  -1 21n a T

Tn+l n k2p k 2 T 2 1 r ( k
I exp n)2R T )

Rearranging this produces:

- A q r +Tn n -T )1
nnl n k 2 1 (Ar) q
T =T exp 2 + n (56)1 =1T RkT n

Time Varing Boundary Conditions

This condition is similar to the constant boundary temperature

condition except that the boundary temperature must be incremented as

the calculation marches in time. The boundary condition must reside in

the time step loop which is shown as the outer most loop in Fig. 3.

The temperatures on these boundaries are incremented and held constant

as the subtime interval calculations are made.

Dependent Variable Initially Equal to Zero

One last condition that can exist wherever there Is initial zero

temperature (T(x,O) = 0) needs to be discussed. If this condition is

encountered, then the following substitution should be made or else the

exponential finite difference method will not work. This can be

readily seen by examing any of the numerical equations e.g., Eq. (56).

Since the Initial temperature would appear In the denominator of the



19

exponent in the exponential, problems would ensue. To circumvent this

difficulty define a new variable T, such that T(x,t) - 1.0 - T(x,t).

Now the exponential finite difference equations described above can be

utilized by simple replacement of the ] variable with the T

variable.

]
~i



III. NUMERICAL COMPARISON OF THE EXPONENTIAL FINITE DIFFERENCE

METHOD TO EXACT SOLUTIONS AND OTHER NUMERICAL TECHNIQUES

The final product of any numerical study is how well the given

method performs when compared to known exact solutions or to other

numerical techniques. The exponential finite difference method will

now be applied to the following cases to demonstrate the capability of

the method to solve the diffusion equation:

(i) One-dimensional heat conduction in cylindrical coordinates with an

infinite and a finite heat transfer coefficient at the surface,

unsteady state,

(ii) Two-dimensional unsteady state heat conduction in Cartesian

coordinates,

(iii) Solution of Laplaces equation, Cartesian coordinates,

(iv) One-dimensional heat conduction in Cartesian coordinates, unsteady

state with temperature varying thermal conductivity,

(v) Steady state Couette flow,

(vi) Three-dimensional heat conduction in Cartesian coordinates,

unsteady state.

One-Dimensional Heat Conduction in Cylindrical Coordinates

The one-dimensional cylindrical coordinate heat conduction case

with temperature as a function of time and radial position will be

investigated for infinite and finite heat transfer coefficient. The

exact results for both cases can be found in Ref. [9].

20
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For infinite heat transfer coefficient on the boundary surface the

exact result is given in [9] as:

T(r,t) - T 2 me-  X(
T0 - T =2 I eT G m=l (km-r) Jl (kjR) (7

where X-R is the Fth zero of

JO(X R) = 0 (58)

The results of both the exact analysis and the exponential finite

difference method are shown in Table I. As can be seen from the

tabulated resu'ts, exponential finite difference results approach the

exact solution as the number of nodes is increased or as the

dimensionless time step is decreased.

When the heat transfer coefficient has a finite value at the

surface, the exact solution from [9] is:

T(r,t) - T= e Jo(mr) (59)TO - T0  = 2B 2
T 0 -Too= ( R 2  + B 2)j0( XiR)

where B = hR/k (Biot number) and X- (characteristics values) arem
given by (for cooling):

(X R)3 1(X R) - BJo(xmR) = 0 (60)

The results are shown in Table II for various values of the Blot

number. As would be expected the solution approaches the exact

solution as the number of nodes in increased. The size of the Biot

number did not seem to effect the accuracy of the solution. As the

elapsed time of the solution proceeded, temperatures predicted by the
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exponential finite difference method approached the exact result. Also

the results indicated that reducing the size of the time sub-interval

increased the method's accuracy.

One last comparison will be made while investigating the

exponential finite difference technique in one-dimensional cylindrical

coordinates. The problem situation is shown in Fig. (6) and applies to

a cylindrical annulus with the following initial and boundary

conditions:

T(r,O) = 0

T(R2,t) = 1.0 (61)

a (Riot) = 0
ar

In Ref. [4] this problem was solved numerically using a

characteristic-value solution. A comparison of results is shown in

Table III for the exponential method using the same grid spacing as in

[4] and for the case where grid spacing is halved. The results are

seen to compare quite well with the finer mesh being slightly closer to

the value from Ref. (4] especially during the first few time steps of

the solution.

Two-Dimensional Heat Conduction in Cartesian Coordinates

The exponential finite difference technique will now be applied to

the two-dimensional heat conduction problem in Cartesian coordinates

shown in Fig. (7). The exponential finite difference method will be

compared to the solution of this problem, as performed in Ref. (4],

using the alte:-nating direction implicit technique (AOI). The results

of the two numerical techniques and the exact analysis are shown in

Table IV. The temperature indicated for comparison is that at the

: .,m
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origin x = y = 0, shown in Fig. (7). As maybe seen, the AOI technique

does not predict the temperature as accurately as the exponential

finite difference method at the first time value shown in Table IV.

However, as the amount of elapsed time increases either method does a

very good job at predicting this temperature. When the number of grid

points was increased, by halving the spatial intervals, the exponential

finite difference method was found to be more accurate for all the time

steps.

Since the AOI method is one that requires simultaneous solution of

equations in the two coordinate directions, the time step size can be

made large. The exponential finite difference technique must have the

dimensionless time step kept below 0.25 to keep the solution stable.

So the required CPU time for the exponential method is higher for this

application.

Solution of Laplaces Equation

Since the exponential finite difference method has been used for

two-dimensional unsteady state conduction, a natural extension with

little additional effort would be to use this method to solve Laplace's

equation. This can be implemented in the exponential finite difference

method by just allowing the solution to march in time until no further

change in the field variable is indicated.

As an example, the problem as shown in Fig. (8) will be solved and

the results compared to those given in Ref. (4]. In the referenced

work, the solution was found by using a Gauss-Seidel iterative

technique.

'S
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A comparison of results along a diagonal from the position (x = 0,

y = 1) to (x - 1, y = 0) is presented in Table V for two different grid

spacings. As can be seen, the solutions are nearly identical with the

exponential method requiring a smaller number of iterations (or time

step increments) to reach a similiar result.

One-Dimensional Unsteady State Conduction With Temperature

Varing Thermal Conductivity

The effect of temperature varing thermal conductivity will now be

investigated using three different numerical schemes: a pure explicit,

the exponential method and an implicit technique. The problem to be

solved is illustrated in Fig. (9a). The thermal conductivity as shown

in Fig. (9b) is assumed to be a linear function of temperature.

The exponential finite difference method will be applied first to

the given problem. The governing partial differential equation is [1]:

PCaT a i-( aT) 62
p t ax (kax)(2

From [1]. Eq. (62) can be changed to a simpler form by using a new

variable e (the Kirchoff transformation) given by:
T

k(T)dT (63)
TR

where kR is the conductivity at temeprature TR9 and

ae k aT a T kR ae
at kR at at = k at (64)
ae k aT
ax kR ax

Substituting Eq. (64) into (62) gives:
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k at ax kRax

or,

PCp (ae a2e
kat) axW (65)

Since it has been assumed that the thermal conductivity is a linear

function of temperature,

k(T) = kR(1 + 13T) (66)

Now returning to Eq. (63) and substituting in Eq. (66), we have:

T

= (kR + OkRT)dT

Direct integration yields:

e = (T - TR) 1 + a (T + TR) 1  (67)

Equation (67) provides the relationship between the variable T and

the new variable e.

Returning to Eq. (65),

ae k a2e (68)
at pCp ax2

Equation (68) is in a form now that the exponential finite

difference can be applied. The resulting equation in the variable can

be shown to be given by:

n+l n at [k (e i- + 0)
e01 = eexp tPC(x) [ 2eA)]) (29)ep" 2e

6Km~r
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Evaluating Eq. (67) at node 1 brings

or

0 n (T n T) +(T n)2 +T 2) (10)

Substitution of Eq. (70) into Eq. (69) at the appropriate time steps

and nodal locations will give:

(T +l -T) a T ((T+)2 T 2~) [(T~ n TR [(T n)2 T 2~]

[(T n+l + Tn - 2Tn) + [(T nj +(T n_2 -2Tn2
exp [k n(Ti1 1-Ti tr)n " [(Tn)2 - T ]

(R1)

where

At

pCp (AX)2

If TR = T,, 0.0, Eq. (71) becomes:

Tn+l +t (T n 1) 2 T n + ft T n
1 2 1 1i 2 1)

n (Tn+ TnI)- 2T + [(Tn,)2+ (T"_ )2- 2(Tn)2

ep Tn+ n

(12)
Tn~l

The equation for T n is a quadratic with the right-hand side of the

equation all being known at time step n, so define a variable sc

such that

=[Tn + a (Tn)2] exp I)yki.

T(tn1  +t _ - 2Tn) + [(Tn 1)2 + (T_ 1)2  - 2(T)

T n .. (T )2 (T1 2 1
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Equation (72) then becomes:

(Tn+1 2 + n+l 2

(T + BT"i - 2 Ki = 0 (74)

Solving this and using the positive root results in:

T 7 (.I+ 1 + 7 K78 (75)

where

13>O

Equation (75) in conjunction with Eq. (74) are implemented in the

exponential finite difference solution sequence. In this case the

conductivity as well as the temperature field must be kept track of on

the sub-time interval level. The dimensionless time step, 9, and the

rate of conductivity change, 3, must be both considered when choosing

the step size so the solution does not become unstable. For this

method, the term (yk /m+l) in the exponential was considered at

its maximum possible value and the time step was adjusted to retain

stability. This criteria was chosen so that

ykin

m 1 <0.5

The next method to be investigated for the temperature varying

conductivity problem will be the pure explicit method. As stated

earlier the governing partial differential equation for one-dimensional

conduction Is given by:

PCp AT = Lx kA- (76)

Pp at ax \ax)

Using the chain rule this equation can be put into a nonconservative

form.
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PC -AT=kA---'-'(T)277
p at x2 aT ax)(1

Assuming the same linear profile as before:

k(T) - k R + Ok RT

then (78)

ak
W B3kR

Substituting Eq. (18) into (77) will give:

PC kR- l A2IT)~ +0 I (T 2
p at kRl+O)ax 2  kR x

or

aT a2T 2 (78. Q ( + :1 + 80kx) (8

where

kR
RP

Using central space differences and a forward time difference we may

write:

T n n
aT 1*1 - T1-1
ax 2ax

Tn+1l n
aT T1  (19)
at a

a T Ti~1 +T_ 1 -2T

ax 2 =(Ax) 
2

Substituting Eq. (79) into (78) produces:

Tn+l n Tn + T ,2Tni[ nj- Tn_ 12
Ti T n) 8 r~ + i-l +][ + so 1-

at 00 [ (AX) 2GRL 2Aix J
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This may be simplified and written as:

n = + Q [( +BT n )( ( n-. ,. + T n_ - 2T n) + (T n+, - T n1)2]

(80)

where
OLR at

(ax)
2

Equation (80) can be used to directly solve for the temperature

field at the next time step. Some additional care must be used to keep

the solution stable as the size of the dimensionless time step 9,

and the rate of conductivity change, 0 both effect the solution.

The final method to be implemented for comparative purposes is the

implicit method. Starting with Eq. (78), we have:

aT R( + OT) a2T+ BeaR Ta (81)

To avoid a solution sequence that would require the solution of

nonlinear algerbraic equations, the following will be assumed;

(a) The term (1 + OT) can be replaced with (1 + OT )

(b) The squared first derivative term can be replaced by

i2 lTn - T n \Tn+l Tnil\
lai +1 i-IJ W1+1 -1

Lx = - 2Ax " ?Ax

This is a linearizing technique known as lagging the coefficients.

Substituting these into Eq. (81) will produce:

nil n F~ ~ ~
T T1  ~+ BTi) Tni+l + l 2T l Iat [1 (Ax) 2

n n n+l n\
a B _ _ _ _ _ _ _ _ _- . 1 1 -1

+ 2ax 2Ax

Further simplification gives:

N ~ ~ **~ ~-,I
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Tn+1 n (1I Bn\ (TI n+ T n.1 - Tn+l\-T+l + T + T -_ T

+ + - T i_) (T :~ - Tl (82)

where

At

(Ax)

Now define:

nn T(83)
nn
n= 1 + BTt

Substituting Eq. (83) into (82) yields:

1~ - n n a ( n +1 n+ n1 n n+1 n-1
T1+ -T~ i n T 1 ~ + T ii - 2Ti + i. ITi -T -

Simplifying this results in:

T (1 + 29n n )- Tn + l  n + - Tn 1  nQ kn) - (84)1+ "11 W -1 Q

The equation shown above is now in a form that can be used in the

Thomas Algorithm [4], i.e., Eq. (84), can be written as:

T n+l n Tn + l Tn+l niTi 1 + bii + cii+1 = Ti

where

a - - ( (85)

b 1 + 2,

i =n)

Equation (85) can now be solved using a tr-diagonal matrix routine.

The variables aI, bI , and ci must be evaluated at each

position and time step as their values change as the field variable

changes.
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A comparison of results of the three methods can be found in

Fig. (10) and Table VI. Figure (10) shows the temperature field

through the slab cross-section. From this, it is evident that the

exponential and pure explicit methods give very similiar results. The

implicit method predicted higher temperatures closer to the slab

surface and lower temperature at the slab centerline then either of the

two explicit methods. In Table VI the results at the slab center are

shown for various elapsed times. As can be seen, all three methods

agreed with each other to within a few percent.

The Steady State Temperature Field of a Couette Flow

Another appiication of the exponential finite difference method

will now be presented. The problem to be investigated is the

developing temperature field in laminar Couette flow [7]. The problem

statement is illustrated in Fig. (11). Neglecting viscous effects, the

governing equation is given by [10]:

PC U =k I (86)Tax ax2 ay2) (86)

Neglecting conduction in the x-direction or assuming that the

convection term is much greater than the conduction term, Eq. (86)

becomes:

U T a 2T

x ax =  ay2

k (87)

pCp

From Fig. (11) using the expression for the velocity in the

x-direction, Ux = Uy/L. Eq. (87) becomes

.e ' e ' e. r ' * ; ;' ,LO
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8T _ *L8T (88)
ax Uy ay2

Equation (88) is now in a form where separation of variables can

be implemented. Following the same procedure as indicated earlier to

find the exponential finite difference equation, it can be shown that:

( T +T
i_ i exp xL + 1 (89)
. U(Y) YJT

The procedure utilized here is that the solution marches in the

x-direction instead of time as was the case for the previous examples.

Information from the last x-position and y-direction are used to

determine the dependent variable at the next x-position.

Results of implementing this method are shown in Fig. (12). The

temperature field is shown for three x-locations for two different

values of L/U. The results indicate that as the upper plate velocity

U is increased, the propogation of the temperature change in the

y-direction is slowed down.

Unsteady State Heat Conduction in Three-Dimensional Coordinates

The final application of the exponential finite difference method

to the diffusion equation will be that of three-dimensional, unsteady

state heat conduction. The exponential method, a pure explicit method,

and an implicit method (method of Douglas, (11]) will be compared to

exact solution for the situation shown in Fig. (13).

The exact solution to the problem illustrated in Fig. 13 is given

in Ref. [10] as:

. . , % % '','. %. .- .% % ''.%% ' - % '%. * V . N]
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T(xyzt) (- )m+n+p
T T

m+ + +

m.O n.O p=0 2 2

* exp + + 2 2t

( Cos a cos[(n + 1f]cos[(p + )_z] (90)

* O[(n + 2 a] 2~ c

where a, b, and c are the widths of the cube in the x, y, and z

directions respectively. Equation (90) will be used to determine how

well the numerical techniques predict the temperature distribution.

The exponential finite difference technique will be investigated

first. The sequence to be followed for determining the finite

difference equation is the same as presented for the earlier cases.

The procedure for this three-dimensional case consists of the following

stepped procedure:

(1) Linearize the partial differential equation

(2) Assume a product solution

(3) Separate time from spatial dependence

(4) Solve for time dependence

(5) Insert the appropriate spatial finite differences into

exponential term that results from step 3

Based on this procedure the three-dimensional exponential finite

difference equation can be shown to be:
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nn Tnn
T, = T.n exp t+ 1. k I,' k i TIJ ,

_ki,j ,k
nT n _ nT n) ( n n2 :]
.J+l.k + TiJ-l.k - . + i.J.k+l + T ilJk- 2 TJ,k

n ~k\~/n+ n

Tjk Tij,k

(91)

Using the sub-time interval concept, Eq. (91)

becomes:

m

TTn+l T n exp M n (92)
i, ,k Ti,j,k m +, 1 E ,j,k

p=O

where m is the number of subtime intervals, 9 is the

dimensionless time step, and Mn is the dimensionless drive numberi ,J,k
given by.

n Tn +11k+Tn - 2TT n n k1k 2
M  ,k Tl.j.k  +.l.k - 2 TA\.k

(ijk T n ) n
i,j,k Ti,j,k

+i.J~k+l 4 , lJ.k--l  T .JA93

Tn4,k i - ? T l (93)

I ,j ,k

Equation (92) will be used for all interior nodes in Fig. 13. This

equation, as well as those that result from the other analysis, will be

adjusted along the insulated boundaries to take into account the

boundary condition that exists there.

The next method to be applied to this three-dimensional case will

be the pure explicit method. The finite difference equation for this

method is given by [11]:

T, T (1 - 69) + 9 T + Tn +T k

+T Ik+ Tn ~ n (94)
i-l,k i T,j,k+l + TiJ,k-I9

- " -#- " '# 4 W
"

"'--- d I # W - " ,' '' '," ' '' . . . ' ' " " " " "
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where Q A 2 Ax = Ay = AZ
(Ax)

As shown in Ref. [11] the dimensionless time step Q must be:

1
< (95)

to ensure stability of the method.

The last numerical technique that will be applied is the Method of

Douglas [11]. This method is implicit, and the spatial directions are

considered sequentially in the x, y, and then z directions

respectively. The intermediate temperatures U (found from x-direct

sweep) and V (found from y-direction sweep) are used to calculate the

actual temperature field variable T (found from z-direction sweep).

The equations that are solved sequentially are presented as follows.

- n
Ulitk -Tt ".k 1 2 U T n + 6 + 6 (Tn 1

C At =2 x i,,k TiJ,k y (i,3, + z 1,,k)

(96)

V..k -T 1 .j.k 1 2 (U + n 4  1 2 ( + n
6 't 2x ,j,k + T i,',k) + 2 y ijk+ k

At x T1(,k+Vl

+nl T 62 (T +j(7

Aty2,: (kikTT, 1 ,k
ij , k i'ii.k 162 U + T+ 2 + (62 V + Tn,a 2 (Ti2k Tn  j

+ 2 +l + T,3k) (98)

where the finite difference operator in the x-direction , for example,

would be:

n Tn n

62 Ti+l.j.k T-1..k - 2T i.jk (99)
x (Ax) 2

Equations (96), (97), and (98) must be solved successively because the

variable U is used in equation (97) to find V and so on. Since the
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method operates on one spatial direction at a time, the Thomas

Algorithm can be utilized. In the case of finding the U variable,

the y and z nodal positions are held constant for all the

x-direction nodal positions (Fig. 14). This process is repeated until

all y and z nodal values for the x-direction variable U are

calculated. This procedure is then repeated in a similar way for the

V variable and then finally for the actual temperature field variable.

The results from the three different, three-dimensional solution

methods are shown in Table VII. The exponential finite difference

method described above outperformed the pure explicit and the method of

Douglas for all positions as shown in Table VII.

In Ref. [11] nine different methods to solve the diffusion

equation in three dimensions were investigated. The method of Douglas

was the preferred method because of its accurate results and low

computer CPU time. In that study the pure explicit method required the

lowest amount of CPU time with the method of Douglas requiring

approximately four times as much. In the present study all three

methods were run on two different mainframe computers to investigate

how well these three methods compared In CPU times. The results are

shown in Table VIII. All three methods were exercised for the same

number of time steps. As indicated, the exponential method was

approximately three times faster than the method of Douglas but still

slower than pure explicit method. From these results it could be

concluded that the exponential method would have been chosen as the

preferred method had it been used in competition with the nine

numerical methods as described in Ref. (11].



IV. - EXTENSION OF THE EXPONENTIAL FINITE DIFFERENCE METHOD

TO NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

The exponential finite difference method will now be applied to

two different nonlinear problems. The problems to be addressed will be

the viscous Burger's equation and the boundary layer equations (steady

state flow over a flat plate).

The viscous Burger's equation is given in Ref. [121 as:

a +  u A a 2 U (100)
ax

To allow application of the exponential method to this equation, the

equation must be first linearized. So letting U = A = constant, for

the nonlinear, term and rearranging the equation, gives:

t = - A + v __ (101)

Assuming a product solution of the form

U(xt) = *(x)O(t)

and taking the appropriate derivatives, Eq. (101) becomes

Sae - Ae A + v e a 2€

Division by *e gives:

1 ae A _ = constant (10?)
e at -1 ax 4 ax2

It can be seen that the terms are now separated. As has been shown

earlier, the left-hand side of Eq. (102) can be written as:

37
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U(xt) = U(x,O) exp (- Kt) (103)

Now returning to Eq. (102) and examining the x-dependence, we have

A At + K _

*ax

Multiplying both sides by *e gives:

- Ae Atx + e KID*.e

ax ax2

This can be written in finite difference form as:

(n - U-I(1 I + Un - 2U) (104)U In Ul-l + V.~ - 14u I 2 Ax (1)
U1 lx)

This is used to replace the exponent in Eq. (103), thus

nntI Ax n n ( +I + U-I - 2U

n . U n exp - U - U +-I +n i ) (105)S(Ax) 2 1 2v (

Equation (105) is the exponential finite difference equation for the

viscous Burger's equation. An example will now be used to demonstrate

the method.

An exact steady state solution to Burger's equation is available

for the following conditions

U(o,t) = u0

U(L,t) 0

The steady-state solution was given as [12]:

U(x) = 0U1  - exp (( Re(x - 1)
)+ exp ( e Q( 1
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where

UoL
ReL = (106)

and U1 Is the solution of the equation

1 + - exp - U ReL

U1I 1 1 I L

The exponential finite difference method will be now used to

numerically solve the problem stated above. However, for the stated

conditions, a problem arises with the portion of the velocity field

initially at zero. To overcome this difficulty, the substitution

method described earlier will be used. A new variable will be defined

such that

. U0 - U

and Burger's equation then becomes:

aiG ail a2a011au: ( -u O)  AU+ V a (107)
i-t(aoax 2

with the following imposed conditions, if (U0 = 1):

U(o,t) 0 0

(108)

U(L,t) U0

Using Eq. (107) the same method of separation of variables must be

performed on the U variable. The problem is now solved for the U

variable and the substitution shown above is then made to find the U

variable. The exponential finite difference equation for U can be

shown to be:

-Z * .
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=n+1 o exp + A ( [(i )(Di+l - il)]

(o+1 +a0_ - 2an
Jn (109)

The results obtained by applying Eq. (109) and the conditions in

Eq. (108) are compared to the steady state exact results of Eq. (106)

and are shown in Fig. (15). The results from the exponential method

were nearly the same as the exact method. The exponential method was

allowed to march in time for quite a number of steps without special
2

treatment of the dimensionless group Atv/(Ax) which could have

been altered to allow convergence to the actual solution in less time

steps.

Another application of Burger's equation was made to investigate

the effect of the diffusion term. The results for the variation of

over four orders of magnitude are shown in Fig. (16) for the same

instant in time. At the two lower v values, the total range of the

field variable takes place over a small number of nodal positions. A

better approximation could be made for these cases by using a finer

grid. Also included on Fig. (16) is the solution of Burger's equation

by a pure explicit technique. For the value of v chosen, the

solution oscillates around the predicted solution found from the

exponential method. The pure explicit solution was found using the

same number of nodes and the same dimensionless step size. When the

solution oscillates, as the pure explicit solution did, the resulting

velocity field can contain physically impossible values.
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The last dpplication to be investigated will be for the

development of a laminar boundary layer on a flat plate (Fig. (17)).

In Ref. [10] the steady state formulation is given in terms of the

following three partial differential equations:

for continuity:

a= 0 (110)
ax ay

for momentum:

UU A -u a2u (111)
aU ay - ay 2

for energy:

T + T a2T (112)
ax ay ay2

with the boundary conditions:

U(x,o) = 0 U(oy) = U0

V(x,o) = 0 V(x,L) = 0 (113)

T(x,o) = 0 T(o,y) = TO

v and a are the momentum and thermal diffusivities respectively.

Equations (111) and (112) car be solved by using the method

presented for the viscous Burger's equation. The only difference is

that the solution will march in the x-direction instead of time.

Keeping this procedure in mind, results of the separation of variables

for Eqs. (111) and (112) were found to be:

U 2 U U + U(
1 +1 . exp~ [X J~U1+ -yU -1)+ (u+1  j Ii - 2 (114)

Ui U 2A (AvY)j

Ti+l T T exp ~ [vi(T -YT~ 1 (T++l +Ji 21~ (115)

2 A Ui
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The continuity equation is written as (12]:

1+1 i+l Ay . 1+1 1 1+1 1 (116)= Vj - 2 Ax - U + UJ 1 - j1)

Equations (114) and (115) are first solved using a spatial

sub-increment as was done for the cases when time was the marching

direction of the solution. After this, the continuity Eq. (116), is

then solved.

The results of this application are shown in Fig. (18) for a

Prandtl number equal to 0.72. As can be seen the thermal boundary

layer was outside the velocity boundary layer as would be expected.

The results with the Prandtl number equal to 0.72 were compared to the

exact solution as presented in Ref. [10]. A downstream position was

chosen and the results are compared in Table IX. The exponential

method results were in good agreement with the exact results.



CONCLUDING REMARKS

In conclusion, an exponential finite difference technique has been

extended to other coordinates systems and expanded to handle problems

in two and three dimensions. The method has direct application to

linear partial differential equations such as the diffusion equation

and can be extended to solve nonlinear equations.

The method was applied to the following cases:

(1) One-dimensional, unsteady state heat transfer in cylindrical

coordinates, infinite and finite heat transfer coefficient.

(2) Two- and three-dimensional, unsteady state heat transfer in

Cartesian coordinates.

(3) One dimensional heat transfer, with temperature varying thermal

conductivity.

(4) Developing temperature field in laminar Couette flow.

(5) Nonlinear partial differential equations (Burger's equation

and boundary layer equations)

The exponential finite difference method predicted the field

variable with a higher degree of accuracy in those cases examined where

the exact solu tion was available. When extended to three dimensions,

the.accuracy was still higher for the exponential finite difference but

the computer CPU time was increased. When the exponential method was

compared to other numerical techniques, the results were found to be

very compariable.
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In conclusion, the results predicted for the exponential finite

difference algorithm for the cases presented in this study demonstrated

that:

(1) Field variable was predicted with a higher degree of accuracy

than other numerical techniques where exact solutions exist.

(2) The method can be applied to linear and nonlinear partial

differential equations with dependent variables that can be

separated.

(3) The stability of the method is the same as that of pure

explicit methods, where the sub-time interval step size

determines the stability.
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TABLE I. - COMPARISON OF RESULTS FOR DIFFERENT DIMENSIONLESS TIME STEP

FOR ONE-DIMENSIONAL HEAT IRANSFIR IN CYLINDRICAL COORDINATES WITH

INFINIlE HEAl TRANSFER COEFFICIENT AT IHE SURFACE. INITIAL AND

BOUNDARY CONDIIIONS ARE:

[h m, T(ro) . 1.0, 1(R,t) = 0.0, - a a &t/(Ar) 2 , a 1.0 M2 /s,
N number of nodes, m number of sub-time intervals.]

From surface N - 11 N a 21 N . 21 N 21 Exact

Sec r-distance m = 4 m . 9 m - 9 m .9 analysis

(M) Q = 1.0 0 1 1.0 0 - 2. - 5.0 ref. (9]

O ---1 -4 0.126168 0.126819 --------
.1 1.0 .862431 .852204 .853083 .. . .848368

.5 .1 .011959 .011671 .011680 .011715 .011582

.5 1.0 .094334 .090309 .090379 .090652 .088895

.5 Total Total Total Total

50 steps 200 steps 100 steps 40 steps

0. o2 .5~
K I . 0.2 M4+ I .1M I . M + 0.

TABLE II. - FINITE HEAT TRANSFER COEFFICIENT

CYLINDRICAL COORDINATES WITH THE FOLLOWING

CONDIIIONS: T(r,o) . 1.0,

T = 0 , Atl(Ar)
2

Time h/k R Exact Exponential finite

ref. difference results[9] )7
N 11 N 21 2

m=4 m 9 m 9
0 1.0 9 5.0 9 1.0

0.1 1 1 0.6846 0.73 0.6978
0 .9768 .9814 .9797 -- ~

.2 1 1 .5102 .5916 .5851
0 .8702 .8852 .8780 - -

.4 1 1 .4132 .4441 .4303 ----

0 .6420 .6698 .6563 ---
.1 2 1 .5009 .5285 .5199

.1 0 .9594 .967 .9643 6

0 .9265 .9385 - -. .9306
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TABLE III. - COMPARISON OF EXPONEN1IAL

FINITE DIFFERENCE METHOD IN ONE-

DIMENSIONAL CYLINDRICAL COORDINATES

TO THE RESULTS OF REFERENCE (4].

. 1.0, At - 1.0 sec, a tt/Ar2  1.0.
N = number of nodes, m = number of
sub-intervals

Time, h/k R, Reference N = 10 N = 19
sec in. (4] m = 4 m = 8

1.0 Q= 1.0

5 18 0.77220 0.773094 0.772922
10 .01449 .011353 .011951

10 - 18 .84661 .846719 .846811
10 .11595 .112112 .113523

30 c 18 .93546 .935278 .935521
10 .57722 .575979 .578198

90 - 18 .99370 .993686 .993776
10 .95872 .958596 .959245

TABLE IV. - COMPARISON OF EXPONENTIAL FINITE DIFFERENCE

METHOD IN TWO-DIMENSIONAL CARTESIAN COORDINATES

TO THE ALTERNATING DIRECTION IMPLICIT METHOD [4].

(For comparison to results in ref. [4] at x - y - o.]

Time, Exact ADI 9 1.0, N = 11, 9 - 1.0, N = 21,
sec [4] at 0.01, m - 4 at = 0.0025, m - 9

0.1 0.09883 0.09333 0.09829 0.09924
.2 .40354 .40354 .40256 .40354
.3 .63179 .63224 .63080 .63166
.4 .71486 .77532 .77403 .77472
.5 .86252 .86283 .86187 .86240
.6 .91601 .91624 .91559 .91597
.7 .94871 .94886 .94841 .94869
.7 (Total of (Total of

70 steps) 280 steps)

m = 0.2 - 0.1m +l m +
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TABLE V. - STEADY STATE HEAT TRANSFER IN TWO-DIMENSIONS

Comparison of exponential finite difference technique to a Gauss-Seidel
technique for the solution of Laplace's equation.

x y 9 by 9 Grid 5 by 5 6rid

Gauss-Seidel Exponential Gauss-Seidel Exponential
88 iteraticns(a) finite 22 iterations(a) finite

difference difference
40 iterations 20 iterations

0.000 1.000 0.0 0.0 0.0 0.0
.125 .875 1.7413 1.7414

.250 .750 6.8946 6.8949 7.1428 7.1430

.375 .625 15.0330 15.0335

.500 .500 24.9999 25.0004 25.0000 25.0003

.625 .375 34.9667 34.9672

.750 .250 43.1052 43.1055 42.8571 42.8573

.875 .125 48.2587 48.2588
1.000 0.000 100.000 100.000 100.000 100.000

aFrom reference (4].

TABLE VI. - COMPARISON OF EXPONENTIAL, PURE-EXPLICIT, AND

IMPLICIT FINITE DIFFERENCE METHODS FOR ONE-DIMENSIONAL,

UNSTEADY-STATE HEAT TRANSFER WITH TEMPERATURE VARYING

THERMAL CONDUCTIVITY AT THE CENTER OF THE SLAB

(K(T) = 1.0 + B(T); 0 . 0.01.]

Time, Temperature, °C
sec

Exponential finite Pure explicit, Implicit, 9 * 1.0
difference, N = 11 N = 11, Q = 0.25, at - 0.01 sec
m = 4, 0 = 0.5, at = 0.0025 sec
at - 0.005 sec

0.01 98.15998 100.00000 94.35768
.02 88.87177 89.21321 85.90591.05 61.30161 60.09306 61.31385

.1 34.37147 33.41929 35.37178

I
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TABLE VII. - COMPARISON OF THREE DIFFERENT, THREE-DIMENSIONAL UNSTEADY STATE

HEAT TRANSFER SOLUTIONS

(T(x,y,z.o) - 1.0; T(x,y,L,t) - T(x,L,z,t) - T(L.yzt) . 0; aT/ax(oy,zt) -

aT/ay(x.o,z,t) . aT/az(x,y,o,t) 0 0; N - number of nodes in x. y, and z
directions; Q - a At/(Ax)2 and Ax - ay - &Z.]

Elapsed Position from Exact Exponential finite Pure explicit Method of Douglas
time, center along analysis difference results, finite difference Douglas finite
sec diagonal result, 0C results, difference results,

x . y . Z 0C N 11, m - 4. 9C SC
Q 0.75 Q - 0.15, N - 11 Q - 0.15, N - 11

(a) (a) (a)

0.09 0.0 0.893490 0.892237 (0.14) 0.889437 (0.45) 0.886760 (0.75)
.5 .440712 .440650 (.014) .435058 (1.28) .439665 ( .24)
.9 .006491 .006484 (.11) .006319 (2.65) .006510 (-.29)

.15 0.0 .645469 .645209 (.04) .640025 ( .84) .641484 (.62)
.5 .253065 .253286 (-.09) .250102 (1.17) .252641 (.17)
.9 .003015 .003022 (-.23) .002970 (1.49) .003023 (-.27)

aAccuracy percent.

TABLE VIII. - COMPARISON OF C.P.U. TIME ON TWO

DIFFERENT MAINFRAMES FOR THREE DIFFERENT

THREE-DIMENSIONAL FINITE DIFFERENCE METHODS

(One-hundred time steps for each method.]

Computer Exponentiala Method of Pure-explicit
method, Douglas, method,

sec sec sec

CRAY-XMP 0.2778 0.955 0.0627
IBM-3033 5.4 12.6 1.8

aBased on the number of sub-time intervals

equal to 100.
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TABLE IX. - COMPARISON OF EXPONENTIAL

FINITE DIFFERENCE METHOD TO EXACT

RESULTS OF BOUNDARY LAYER EQUATION

(10] FOR THE VELOCITY PROFILE AT

ONE DOWNSTREAM LOCATION.

(Distance downstream x - 500 cm,
v 0.0072 cm

2 /s.]

Distance Exact Exponential
perpendicular result method result,

to plate, (10] N - 21 m 8
y (cm)

1.0 0.17 0.17428
2.0 .34 .34643
3.0 .51 .51020
4.0 .65 .65658
5.0 .78 .77684
6.0 .87 .86636
7.0 .93 .92638
8.0 .96 .96265
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APPENDIX

This appendix contains all the computer programs mentioned in this

report. A computer program variable list is also contained with a

description of their use, and a program number to refer to the programs

that they are contained in.

Each of these programs was written to be run in an interactive

mode with the mainframe computer. The only cases run differently were

for the three-dimensional unsteady state heat transfer cases that were

run in batch mode on the Cray X-HP.

The program structure is as follows. A main program is used to

describe the necessary parameters and for asserting the proper boundary

conditions. The main program then calls the subroutine where the

actual finite difference methods are exercised and the results are then

printed.
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COMPUTER PROGRAM LIST

Program Program Program function
number name

1 SOURCE.EFDCYL One-dimension, unsteady state, cylindrical
coordinates, infinite and finite heat
transfer coefficient

2 SOURCE.EFD2D Two-dimensional Cartesian coordinates,
unsteady state heat transfer

3 SOURCE.LAPLAC Two-dimensional Laplace's equation

4 SOURCE.EFDVAR One--dimensional unsteady state heat
conduction, varying thermal conductivity,
exponential finite difference method

5 SOURCE.EXPVAR One-dimensional, unsteady state heat
conduction, varying thermal conductivity,
explicit finite difference method

6 SOURCE.IMPVAR One-dimensional, unsteady state heat
transfer, varying thermal conductivity,
implicit finite difference method

7 SOURCE.COUE One-dimensional, developing temperature field
in laminar couette flow

8 SOURCE.EX3D Exact analysis, three-dimensional heat
transfer in a cube

9 SOURCE.EFD3D Three-dimensional unsteady state heat
transfer in a cube using exponential finite
difference method

10 SOURCE.EXPL3D Three-dimensional unsteady state heat
transfer in a cube using explicit finite
difference method

11 SOURCE.DOUGLA Three-dimensional unsteady state heat
transfer in a cube using the method of
Douglas

12 SOURCE.BURGER Exponential solution of nonlinear viscous
Burger's equation

13 SOURCE.EXBURG Pure explicit solution of nonlinear viscous
Burger's equation

14 SOURCE.NONBOU Exponential Method of solution for boundary
layer equations for flow over a flat plate
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COMPUTER PROGRAM VARIABLE LIST

Program Programs Variable Description
variable used in

name

N 1-14 Number of nodes

NS 1-12,14 Number of time sub intervals

NTOT 1-14 Total number of time or spacial steps

TSI 1-13 Dimensionless time step increment

T 1-7,9,10,12,13 Total elapsed time or spatial distance
between steps

DL 1 Radial distance between adjacent nodes

R 1 Radial length

IPR 1-14 Number of steps between output of results

NB I Heat transfer boundary condition flag

V 1-14 Dependent variable

HK 1 Convection heat transfer coefficient
divided by thermal conductivity

VM 1 Dependent variable value outside of
solid in the surrounding medium

M 1-10,12 Dimensionless drive number

P 1-10,12 Sum of the drive numbers

VT 1-14 Dependent variable value during
sub-time interval

B 1 Biot number

THE 1-3,12-14 Variable used for the output of results

TIME 1-6,8-13 Total elapsed time of the solution at
the current output

ITMAX 1-14 Output counter

ETi 3 Accuracy desired in solution of
Laplace's equation

; "~- . *4".*iii ' % ' '. " p. %t,', ,*-C , ,,.,
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Program Program Description
variable numbers

name used in

DELV 3 Difference in dependent variable value from
one time step to the next

ETA 3 Sum of the absolute value of the differences
found in DELV

KR 4-6 Reference thermal conductivity

BETA 4-6 Slope of thermal conductivity variation with
temperature

KOK 4 Thermal conductivity at the total time step
interval or sub-time interval respectively

THE 4 Kirchoff transformation variable (used in
exponential finite difference program with
varying thermal conductivity)

KAPPA 4 All values known from the last time step
increment and used to solve the quadratic
equation that results in the exponential
finite difference solution with temperature
varying thermal conductivity

DERSOR 5 Absolute value of velocity difference found in

evaluation of velocity gradient

OMEGA 6 Same as nondimensional time step

A,B,C,D 6,11 Coefficient used in tridiagonal matrix
algorithm.

KAP,GAM 6 Variables used to determine A,B,C

BETA,GAMMA 6 Variables used in Thomas, tridiagonal
algorithm

TS 6 Same as total elapsed time

T 6 Dependent variable

V 6 Solution vector tr-diagonal algorithm

SP 7 Maximum width divided by maximum velocity

FL 7 Parameter based on position in flow

DIS1 7 Serves same function as time for unsteady
state problem

I

SIK |



Program Progrdm Description
variable numbers

name used in

PI,PI2,PI3 8 1, j
2 , .13

NODES 8 Same an N

TO 8 Initial temperature

TI 8 Surface temperature, t > 0

ALFA 8 Thermal diffusivity

TNEW 8 Exact temperature at a x, y, and z
location after elapsed time t has occurred

T 11 Dependent variable

DELX,DELY,DELZ 11 Part of the central difference operator

UV 11 Variables used to sweep preliminary solution
in the x then y directions respectively

M 11 Used as an array to contain the known
quantities used in the tridiagonal algorithm

RNU 12-14 Kinematic viscosity

DX 14 Step length in flat plate direction

RAL 14 Thermal diffusivity

YMAX 14 Maximum distance perpendicular to flat plate

DY 14 Step length perpendicular to the flat plate

UV 14 Dependent variables (velocity) in x and y
directions respectively

T 14 Temperature field variable

MU,MT 14 Drive numbers for velocity in x-direction
and temperature field

PU,PT 14 Sum of drive numbers for MU, MT

Ul,IT,VT 14 x-dlrection velocity, temperature, and
y-direction velocity on subinterval

UTI 14 Temporary U-direction velocity field

IS,TSI 14 Dimensionless time step for temperature and

x-direction velocity respectively
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C
C WRITTEN BY R.F. HANDSCHUH
C
C SOURCE.EFDCYL
C
C PROGRAM *1
C
C
C THIS PROGRAM IS TO BE USED AS THE STARTING POINT FOR INVESTIGATING
C THE EXPONENTIAL FINITE DIFFERENCE ALGORYTHM. THIS METHOD WAS INTRODUCED
C BY M.C. BHATTACHARYA. THIS SOURCE CODE IS FOR CYLINDRICAL
C COORDINATES, UNSTEADY-STATE HEAT CONDUCTION, 1 DIMENSION.
C
C

IMPLICIT REAL*8(A-H,O-Z)
REAL*8 V(100),R(100)

C
C INPUT THE PROGRAM DATA
C

WRlTE(6 ,15)
15 FORMAT(lX,'NUMBER OF NODES=N 13"/)

READ(9,10)N
10 FORMAT(13)

WRITE(6, 12)
12 FORMAT(lX,'NUMBER OF TIME SUB INTERVALS= NS 13')

READ(6 ,13)NS
13 FORMAT(1)

WRITE(6,16)
16 FORMAT(IX,'TOTAL NUMBER OF TIME STEPS= NTOT I3')

READ(9,21 )NTOT
21 FORMAT(13)

WRITE(6 ,24)
24 FORMAT(lXINPUT TIME*THERMAL DIFFUSIVITY / RAD INT SQUARED F5.31)

READ(9,25)TSI
25 FORIIAT(F5.3)

WRITE(6,22)
22 FORMAT(1X,'TOTAL TIME OF ONE TIME STEP= T F7.5')

READ(9,23)T
23 FORMAT(F7.4)

WRITE(6,26)
26 FORtIAT(1X,'INPUT RADIAL INTERVAL LENGTH=DL F5.3')

READ( 9,27 )DL
27 FORrIAT(F5.3)

R( 1 )l.
DO 28 I=2,N
IM 1 I-i

28 R(I)=R(IMl)-DL
WRITE(6,32)

32 FORrIAT(1X,'INPUT NUMBER OF TIME STEPS BEFORE PRINTING 13')
READ( 9,33 )IPR

33 FORMAT(I3)
C
C DETERMINE THE TYPE OF BOUNDRY CONDITION, THEN SET VALUES
C
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WRITE(6,1.)
14. FORMAT(1X,'INPJT HEAT TRANSFER B.C. 0 -INFINITE 1 FINITE'/)

READ( 9,17 )NB
17 FORMAT(I1)

IF(NB.EQ.1) GO TO 100
V( 1)=0.
DO 30 1=2,N

30 V(I)=1.0
C
C CALL EXP FIN DIF FOR INFINITE HEAT TRANSFER COEFFICENT
C

CALL EFDIHC(NDNS,HTOT,TSI,VT,RDL,IPR)
GO TO 101

100 CONTINUE
W~RITE(6, 31)

31 FORrIAT(1X,'INPUT HEAT COEF / TERM COND F5.3')
READ(9,3'.)HK

34. FORIIAT(F5.3)
DO 4.0 11I,N

4.0 V(I)=1.
vr1=0.

C
C CALL EXP FIN DIF FOR FINITE HEAT TRANSFER COEFFICENT
C

CALL EFDFHC(HK,14,VI,DL,NS,V,NTOT,TSI,T,R,IPR)
101 CONTINUE

STOP
END

C
C SUBROUTINE EFDIHC
C

SUBROUTINE EFDIHC(NNS,NTOTTSI,VT,RDL,IPR)
C
C FOR INFINITE HEAT TRANSFER COEFFICENT
C

IMPLICIT REAL*8 (A-H, O-Z)
REAL*8 VT(100),V(100),M(100),P(100) ,R(100),THE(100)
TS=TSI/DFLOAT(NS+1)

21 FORMAT(1X,11(F6.3,2X))
WRITE(6 .22)DLTSI

22 FORMAT(1X,2(F6.3,2X))
N1=N-1
NS1=NS+1

C
C BEGIN MAIN TIME STEP LOOP
C

DO 20 L=1,NTOT
C
C ZERO DRIVE NUMBERS AND SET TEMPORARY VARIABLES EQUAL TO THE
C LAST TOTAL TIME STEP VALUES
C

DO 15 I=1,N
15 P(I)=0.
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DO 10 I=1,I(
10 VT(I)=V(I)

C SUB TIMlE INTERVAL

C
DO 30 Kl1,NS1

C
C CALCULATE THE DRIVE NUMBERS
C

DO 40 I=2,N1
Im11I-1
IP1=I+1
M(I)=(2.*VT(I)-VT(IM1)-VTCII1) )/VT(I)

M(N)=2.*(VT(N)-VT(Nl) )/VT(N)
C
C CALCULATE THE DEPENDENT VARIABLE ON THE SUB-INTERVAL LEVEL
C

DO 50 I112,N
50 VT(I1)=VT(Il)*DEXP(-TS*M(I1))

C
C SUM THE DRIVE NUMBERS

DO 60 1=2,N

30 CONTINUE
C
C CALCULATE THE DEPENDENT VARIABLE ON THE NEXT COMPLETE TIME STEP
C

DO 70 I=1,N
V(I)=V(I)*DEXPC-TS*P(I))

70 CONTINUE
ITMAX=ITMAX+ 1

C
C PRINT THE RESULTS
C

IF(ITMAX.LT.IPR)GO TO 20
DO 71 I=1,N

71 THE(I)=V(I)
ITMAX=0
WRITE(6,5)

5 FORMIAT(/)
WRITE( 6,31 )L

31 FORMAT(1X,'TIME STEP NUMBER='.I3)
TIrIE=T*DFLOAT( L)
WRITE(6 ,32)TIME

32 FORMAT(1X,'ELAPSED TIME=',F10.4,' SECONDS')

IF(N.GT.11)GO TO 81

82 FORMAT(11(2X,F8.6))
GO TO 84

81 CONTINUE



NNS=N21+l
WRITE(6,82)(THE(I) ,I=HNS,N)

84. CONTINUE
20 CONTINUE

RETURN
END

C
C SUBROUTINE EFDFHC
C

SUBROUTINE EFDFHC(HK,N,VM,DL,NS,V,NTOT,TSI,T,RIPR)
IMPLICIT REAL*& (A-H,O-Z)
REAL*8 VT(100) ,V(100) ,M(100),P(100),R(100) ,THE(100)
B~HiQKDL
TS=TSI/DFLOAT( NS+1)
NS1=NS+1
Nl=N-1
N2=N-2

C
C BEGIN THE TOTAL TIME STEP LOOP
C

DO 20 L=1,NTOT
C
C ZERO THE DRIVE NUMBERS AND SET THE TEMPOARY DEPENDET VARIABLES
C EQUAL TO THE LAST COMPLETE STEP VALUES
C

DO 15 I=1,N
15 P(I)=0.

DO 10 I=1,H
10 VT(I)=VCI)

C
C SUB TIME INTERVAL
C

DO 30 K=1,NS1
C
C CALCULATE THE DRIVE NUMBERS
C

M( 1)=M(l1)-DL*B*( VT(l1)-VM)/(R(l1)*VT( 1))
DO 40 I=2,Nl
1m11I-1

C

DO 50 I111,N
50 VT(I1)=VTCI1)*DEXP(-TS*M(Il))

C
C SUM THE DRIVE NUMBERS
C

DO 60 I=1,N
60 P(I)=P(I)+M(I)



30 CONTINUE
C
C CALCULATE THE DEPENDENT VARIABLE ON THE NEXT COMPLETE TIME STEP
C

DO 70 I=1,N

70 CONTINUE
ITMAX=ITMAX+ 1
IF(ITMAX.LT.IPR)GO TO 20

C
C PRINT THE RESULTS
C

DO 71 I1I,N
71 THE(I)=V(I)

ITMAX=0
WRITE(6 ,5)

5 FORMAT(/)
WRITEC 6,31 )L

31 FORM'AT(LX,'TIME STEP NUMBER=',I3)
TIME=T*DFLOAT (L)
WRITE(6,32)TIME

32 FORMAT(lWELAPSED TIME=',FlO.4,' SECONDS')
IF(N.GT. 11 )N21=N/2
IF(N.GT.11)GO TO 81
WRITE(6,82)(THE(I) ,11,N)

82 FORMAT(11(2X,F8.6))
GO TO 84

81 CONTINUE
WRITE(6 ,82)(THE(I) ,I1 ,N21)

WRITE(6,82) (THECI) ,I=NNS,N)
84 CONTINUE
20 CONTINUE

RETURN
END



C
C SOURCE.EFD2D
C
C WRITTEN BY R.F. HANDSCHUH
C
C PROGRAM #2 ***
C
C THIS PROGRAM IS FOR 2-DIMENSIONAL C:ARTESIAN COORDINATES
C UNSTEADY STATE HEAT TRANSFER. THE METHOD OF SOLUTION IS THE
C EXPONENTIAL FINITE DIFFERENCE ALGORYTHM. THIS PARTICULAR PROGRAM IS
C FOR INFINITE HEAT TRANSFER COEFFICENT AT THE EXPOSED SURFACES
C AT X=Y=1.O FOR X=Y=0 THE SURFACE IS CONSIDERED TO BE
C PERFECTLY INSULATED.
C
C

IMPLICIT REAL*8(A-H,O-Z)
REZAL*8 V(25,25)

C INPUT PROGRAM DATA
C

WRITE(6, 15)
15 FORMAT(1X,'NUMBER OF NODES=N 13'/)

READ(9, 10 )N
10 FORMAT(13)

WRITE(6 ,12)
12 FORMAT(1X,'NUMBER OF TIME SUB INTERVALS= NS 13')

READ(9,13)NS
13 FORMAT(13)

WRITE(6, 16)
16 FORMATC1X,'TOTAL NUMBER OF TIME STEPS= NTOT 13')

READ( 9,21 )NTOT
21 FORMAT(13)

WRITE(6,24)
24 FORMAT(lX,'INPUT TIME*THERMAL DIFFUSIVITY / LENGTH SQUARED F5.3')

READ(C9, 25)TSI
25 FORMAT(F5.3)

WRITE(6,22)
22 FORMAT(1X,'TOTAL TIME OF ONE TIME STEP= T F6.41)

iAEAD(9,23)T
23 FORMAT(F6.4)

WRITE(6,26)
26 FORMATC1X,'NUMBER OF TIME STEPS BEFORE PRINTING= 13')

REA,( 9,27 )IPR
27 FORMAT(I3)

WRITE(6 ,250)H,NS,NTOT
250 FORMAT(1X,'# OF NODES=',13,2X,'# OF SUB-TIME-INT=',I3,2X,

*'# OF TIME STEPS=',I3)
WRITE(6,251 )TSI,T

251 FORMAT(1X,'(TIME*THER DIFF)/LEHGTH SQUARED='F5.3,2X,
"'TIME STEP LENGTH=',F6.4/)

C
C INITIALIZE THE BOUNDRY CONDITIONS
C

DN AQA- -w e
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DO 30 I=1,Nl
DO 30 3=1,N1

30 V(I,J)=1.0
C

I=N
DO 50 J=1,N

50 V(I,J)=0.0
J=N
DO 51 I=1,N

51 V(I,J)=0.0
C
C CALL EXP FIN DIF FOR INFINITE HEAT TRANSFER COEFFICENT
C

CALL EFDIHC(NNS,NTOT,TSI,VT,IPR)
STOP
END

C
C SUBROUTINE EFDIHC
C

SUBROUTINE EFDIHC(N,NSNTOTTSIV,T,IPR)
C
C FOR INFINITE HEAT TRANSFER COEFFICENT
C

IMPLICIT REAL*8(A-H,O-Z)
REAL*8 VT(25,25),V(2a,25),M(25,25),P(25,25),THE(25,25)

C
C PRINT HEADING
C

WRITE(6,222)
222 FORMAT(IX, '*  * SOURCE.EFD2D ****'II)

TS=TSI/DFLOAT(NS+1)
NI=N-1
NS1=NS+1

C
C BEGIN MAIN TIME STEP LOOP
C

DO 20 L=1,NTOT
C
C ZERO THE DRIVE NUMBERS AND SET TEMPORARY DEPENDENT VARIABLE
C EQUAL TO THE LAST FULL TIME STEP VALUE
C

DO 15 J=1,N
DO 15 I=1,N

15 P(I,J)=O.
DO 10 J=1,N
DO 10 I=1,N

10 VT(I,J)=V(I,J)
C
C SUB TIME INTERVAL
C

DO 30 K=I,NSI
C
C CALCULATE THE DRIVE NUMBERS
C
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DO '41 J=2,Nl
311=3- 1
'jp1=j~l
DO 40 I=2,N1
Irll=I-1
IP1=I41
t(I,J)=(VT(IP1,J)+VT(flhl,J)+VT(I,JPI)+VT(I,Jtll)-4.*VT(T,J))

40 M(I,J)=M(I,J)/VT(IJ)
41 CONTINUE
C
C INSULATED BOUNDRY ALONG X-AXIS
C

3=1
3p1=j+1
DO 42 1=2,Nl
IP1=I+1
1111=I-1

42 M(I,J)=(VT(IPl,J)+VT(IM1,J).AVT(I,JP1)-4.*VT(I,J))/VT(I,J)
C
C INSULATED BOUNDRY ALONG Y-AXIS
C

1=1
IP1=I+1
DO 43 J=2,N1
JP1=J+1

C CORNER AT ORIGIN
C

M(1, 1)=(2.*VT(1, 2) +2.*VT(2, 1)-4.*VT1, 1) )/VT(l, 1)
C
C CALCULATE THE DEPENDENT VARIABLE ON THE SUB-INTERVAL LEVEL
C

DO 50 I1=1,Nl
DO 50 J11l,N1

50 VT(Il,Jl)=VT(Il,1)*DEXP(TS*M(I1,31))
C
C SUM THE DRIVE NUMBERS
C

DO 60 I=1,Nl
DO 60 31I,N1

60 P(I,3)=P(IJ)+M(IJ)
30 CONTINUE
C
C CALCULATE THE DEPENDENT VARIABLE AT THE NEXT COMPLETE TIME STEP
C

DO 70 J1I,N
DO 70 I=1,N
V(I,3)=V(I,J)*DEXP(TS*P(I,J))

70 CONTINUE
ITMAX77ITMAX+1
IF(ITMAX.LT.IPR)GO TO 20

C



C PRINT THE RESULTS
C

W.RITE(6,5)
5 FORMIAT(/)

WRITE( 6,31 )L
31 FORIIAT(lX,'TIME STEP NUIBER=',13/)

TIE=T*DFLOAT (L)
WRITE( 6,32 )TIIIE

32 FORIAT(5WDELAPSED TIMEE',F1O.4,'SECONDS',)
DO 71 I=1,N
DO 71 J=1,N

71 THE(IJ)=1.0-V(I.J)
IF(N.GT.11)GO TO 58
DO 59 J=1,N
WRITE(6 ,82)(THECI,J) ,11,N)

82 FORrIAT(11(2X,F8.6))
59 CONTINUE

GO TO 54
58 CONTINUE

DO 57 J=1,N
WRITE(6 ,56)(THE(I,J) ,I=1 ,11)

56 FORIIAT(11(2X,F8.6))
WRITE(6,56)(THE(I,J) ,112,N)

57 CONTINUE
54 CONTINUE

ITMAX=0
20 CONTINUE

RETURN
END
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C
C SOURCE.LAPLAC
C
C WRITTEN BY R.F. HANDSCHUH
C
C PROGRAM #3 **
C
C THIS PROGRAM IS TO BE USED TO SOLVE THE LAPLACE'S EQUATION
C USING THE EXPONENTIAL FINITE DIFFERENCE METHOD.
C
C

IMPLICIT REAL*8(A-H,O-Z)
REAL*8 V(25,25)

C
C INPUT PROGRAM DATA
C

WflITE(6, 15)
15 FORMAT(1X,'NUMBER OF NODES=N 13'/)

READ( 9,10 )N
10 FOILMAT(I3)

WRITE(6, 12)
12 FORMAT(lX,'NUMBER OF TIME SUB INTERVALS= NS 13')

READ( 9, 13)NS
13 FORMAT(I3)

WRITE(6,16)
16 FORMAT(1X,'TOTAL NUMBER OF TIME STEPS= NTOT I3')

READ(9,21)NTOT
21 FORMAT(13)

WRITE(6,24)
24 FORMAT(1X,'INPUT TIME / LENGTH SQUARED F5.3')

READ(9,25)TSI
25 FORMAT(F5.3)

WRITE(6,22)
22 FORMAT(1X,'TOTAL TIME OF ONE TIME STEP= T F7.6')

READ(9,23)T
23 FORMAT(F7.6)

WP.ITE(6,26)
26 FORMAT(1X,'NUMBER OF TIME STEPS BEFORE PRINTING= 13')

READ( 9,27 )IPR
27 FORMAT(I3)

WRITE( 6,31)
31 FORMAT(1X,'INPUT ACCURACY DESIRED= F7.6')

REAI'( 9, 32)ET1
32 FORMAT(F7.6)

H1=H-1
C
C INITIALIZE THE BOUNDRY CONDITIONS
C

DO 30 1=2,N1
DO 30 J=2,N1

30 V(I,J)=100.
C

I=N
DO 50 J=1,N

fli m ,~ 11111 l*% ii*,1-'11 !I I I V, .
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50 V(I,J)=0.0
J=N
DO 51 1=1,N

51 V(I,J)=0.0
C
C

J7=
DO 53 I=2,N1

53 V(I,J)=0.0
C
C

I=1
DO 52 J=1,N

52 V(I,J)=100.0
C
C
C CALL EXP FIN DIF FOR LAPLACE EQUATION
C

CALL EFDIHC(M,NSNTOT,TSI,V,TIPR,ET1)
STOP
END

C
C SUBROUTINE EFDIHC
C

C SUBROUTINE EFDIHC(N,NS,NTOT,TSI,V,T,IPR,ETI)
C

IMPLICIT REAL*8 (A,O-Z)
REAL*8 VT(25, 25),V(25,25) ,t(25,25),P(25,25),THE(25,25)
TS=TSI/DFLOAT( NS+l)
N12N-1
NS1=NS+l

C
C BEGIN MAIN STEP INCREMENT
C

DO 20 L=1,NTOT
ETA=O .0

C
C ZERO THE SUM OF THE DRIVE NUMBERS
C

DO 15 J=1,N
DO 15 1=1,H

15 P(I,J)=O.

C SAVE THE DEPENDENT VALUES FROM THE LAST TOTAL TIME STEP
C

DO 10 J=1,N
DO 10 I=1,N
DELV=V(I,J)-VT(I,J)
ETA=ETA+DABS(DELV)

10 VT(I,J)=V(I,J)
IF(L.LE.88) GO TO 107
IF(ETA.LE.ET1)GO TO 100

107 CONTINUE



84

C
C SUB TIME INTERVAL
C

DO 30 K=1,NS1
C
C CALCULATE THE DRIVE NUMIBERS
C

DO 411 J=2,Nl

DO 40 1=2,N1
Im11I-1

M(I,J)=(VT(IP1,J)+VT(IM1,J)+VT(I,JP1 )+VT(I,JM1)-4 .*VT(I,J))
40 M(I,J)=M(I,J)/VT(I,J)
41 CONTINUE
C
C CALCULATE THE DEPENDENT VARIABLE ON THE SUB-TIME INTERVAL
C

DO 50 11=2,Nl
DO 50 Jl=2,N1

50 VT(Il,Jl)=VT(I,J)DEXP(TS*I1(I,i31))
C
C SUM THE DRIVE NUMBERS
C

DO 60 I=1,N1
DO 60 J=1,Nl

60 P(ITJ)=P(I,J)+1(I,J)
30 CONTINUE
C
C CALCULATE THE DEPENDENT VARIABLE ON THE NEXT TOTAL STEP
C

DO 70 J=1,N
DO 70 I=1,H

70 CONTINUE
ITMAX=ITMAX+ 1

C
C PRINT THE RESULTS
C

IF(ITMAX.LT.IPR)GO TO 20
WRITE(6,5)

5 FORMAT(/)
WRITE(6,31 )L

31 FORMAT(1XTIME STEP HUMBER=',13/)
TIME=T*DFLOAT (L)
DO 71 I=1,N
DO 71 J1I,N

71 THECI,J)=V(I,J)
IF(N.GT.11)GO TO 58
DO 59 J=1.N

82 FORMAT(11(2X.F8.4))
59 CONTINUE
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GO TO 54
58 CONTINUE

DO 57 J=1,N
WRITE(6,56)(THECI,J),1=1, 11)

56 FORMAT(11(2X,F8.4))
WRITE(6,56 )(THE(I,J) ,I=12,N)

57 CONTINUE
54 CONTINUE

ITlAX= 0
20 CONTINUE

GO TO 101
100 CONTINUE

WRITE(6, 103)L
103 FORMAT(2X'~*** CONVERGED RESULT *****' ,5X, 'ITERATIOH=' ,14//)

DO 102 J=1,N
WRITE(6 ,56)(V(I,J) ,I=1,N)

102 CONTINUE
101 CONTINUE

RETURN
END
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C
C WRITTEN BY R.F. HANDSCHUH
C
C ** PROGRAM #4 **

C SOURCE.EFDVAR
C
C
C THIS PROGRAM IS FOR THE SOLUTION OF THE DIFFUSION EQUATION
C WITH VARYING THERMAL CONDUCTIVITY. THE METHOD USED IS THE
C EXPONENTIAL FINITE DIFFERENCE METHOD.
C
C

IMPLICIT REAL*8(A-H,O-Z)
REAL*8 V(100),KR

C
C INPUT PROGRAM DATA
C

WRITE(6, 15)
15 FORMAT(1X,'NUMBER OF NODES=N 13"/)

READ(9,1O)N
10 FORMAT(13)

WRITE(6,12)
12 FORMAT(1X,'NUMBER OF TIME SUB INTERVALS= NS 13')

READ(6, 13)NS
13 FORMAT(13)

WRITE(6,16)
16 FORMAT(1X,'TOTAL NUMBER OF TIME STEPS= NTOT 13')

READ(C9 ,21) NTOT
21 FORMAT(13)

WRITE(6,24)
24 FORMAT(1X,'INPUT TIME*THERMAL DIFFUSIVITY / LENGTH SQUARED F5.3')

READ(9,25)TSI
25 FORMAT(F5.3)

WRITE(6,22)
22 FORMAT(1X,'TOTAL TIME OF ONE TIME STEP= T F7.5')

READ(6,23)T
23 FORMAT(F7.5)

WRITE(6,14)
14 FORMAT(1X,'INPUT REFERENCE THERMAL CONDUCTIVITY=F5.4')

READ(9, 17)KR
17 FORMAT(F5.4)

WRITE(6,26)
26 FORMATC1X,'INPUT THERMAL CONDUCTIVITY SLOPE VALUE= F5.4')

READ( 9,27 )BETA
27 FORMAT(F5.4)
C
C INITIALIZE THE BOUNDRY CONDITIONS
C

V( 1)=O.
V(N)=D.
141=H- 1
DO 30 1=2,N1

30 V(I)=1OO.
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C

C CALL EXP FIN DIF FOR INFINITE HEAT TRANSFER COEFFICENTI
CALL EFDIHC(N,NS,NTOT,TSI,V,TKR,BETA)
STOP
END

C SUBROUTINE EFDIHCCI
C SUBROUTINE EFDIHC(N,NS,NTOTTSI,V,T,KR,BETA)

C FOR INFINITE HEAT TRANSFER COEFFICENT
C

IMPLICIT REAL*8(A-H,O-Z)
REAL*8 VT(100) ,V(100),M(100),P(100)
REAL'*8 KR,K(l0),KO(100),THE(100) ,KAPPA(100)
TS=TSI/DFLOAT( NS+ 1)
N1=N-1
NS I=NS+ 1

C PRINT HEADING
C

WRITE(6,5)
WRITE(6. 100)

100 FORMAT( lX,'***** SOURCE.EFDVAR
C
C BEGIN MAIN TIME STEP LOOP
C

DO 20 L=1,NTOT

C ZERO THE SUM OF THE DRIVE NUMBERS
C

DO 15 I=1,N
15 P(I)=G.

C
C SET VARIABLES EQUAL TO THE LAST STEPS VALUES
C

DO 10 I=1,N
10 VT(I)=VCI)

DO 11 I=1,N
11 KO(I)=KR+BETA*KR*V(I)

C
C SUB TIME INTERVAL
C

DO 30 KK=1,NS1
DO 35 I1.N
KCI) =KR+BETA*KR*VT( I)

35 THE(I)=VT(I)+BETA*VT(I)*VT(I)/2.0
C
C CALCULATE THE DRIVE NUMBERS
C

DO 40 I=2,N1
IMI=I-1
IP11I+1
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M(I)=r(I)+BETA*(VT(IPI)**2.+VT(IMI)**2.-2.*VT(I)**2.)/2.
40O MCI)=t1(I)/THE(I)

DO 50 11=2,N1
50 KAPPA(Il)=THE(Il)*DEXP(TS*(l.+BETA*VT(I))*M(I1))
C
C CALCULATE THE DEPENDENT VARIABLE ON THE SUB-TIME INTERVAL
C

DO 55 11=2,Nl
55 VT(I1)=(-l.+SQRT(1.+2.*KAPPA(Il)*BETA))/BETA
C
C SUM THE DRIVE NUMBERS
C

DO 60 I=2,Nl
60 P(I)=P(I)+i(I)
30 CON4TINUE

WRITE(6,5)
5 FORMAT(/)

WRITE(6,31)L
31 FORrIATC1X,'TIME STEP NUMBER=',13/)

TIME=T*DFLOAT(L)
WRITE(6 ,32)TIME

32 FORMATC5X,'ELAPSED TIME=',Fl0.4,'SECONDS'/)
C
C CALCULATE THE NEXT TOTAL STEP DEPENDENT VARIABLES AND PRINT RESULTS

DO 70 I=1,N
THE(I)=V(I)+BETA*V(I)*V(I)/2.0
KAPPA(I)=THE(I)*DEXP(TS*(1 .+BETA*VCIJJ*P(I))

70 V(I)=(-l+SQRT(1.+2.*KAPPA(IWBETA))/BETA

20 CONTINUE
RETURN
END

loom&.
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C
C WRITTEN BY R.F. HANDSCHUH
C
C
C SOURCE.EXPVAR
C
C PROGRAM #5 *
C

C THIS PROGRAM IS FOR THE SOLUTION OF THE DIFFUSION EQUATION
C WITH VARYING THERMAL CONDUCTIVITY. THE METHOD USED IS THE
C EXPLICIT FINITE DIFFERENCE METHOD.
C
C

IMPLICIT REAL*8(A-H,O-Z)
REAL*8 V(100),KR

C
C INPUT PROGRAM DATA
C

WRITE(6,15)
15 FORMAT(IX,'NUMBER OF NODES=N 13'/)

READ(9,10)N
10 FORMAT(I3)

WRITE(6,16)
16 FORMAT(IX,'TOTAL NUMBER OF TIME STEPS= NTOT 13')

READ(9,21)NTOT
21 FORMAT(I3)

WRITE(6,24)
24 FORMAT(1X,'INPUT TIME*THERMAL DIFFUSIVITY / LENGTH SQUARED F5.3')

READ(9,25)TSI
25 FORMAT(F5.3)

WRITE(6,22)
22 FORMAT(IX,'TOTAL TIME OF ONE TIME STEP= T F7.5')

READ(6,23)T
23 FORMAT(F7.5)

WRITE(6,14)
14 FORMAT(OX,'INPUT REFERENCE THERMAL CONDUCTIVITY=F5.4')

READ(9,17)KR
17 FORMAT(F5.4)

WRITE(6,26)
26 FORMAT(lX,'INPUT THERMAL CONDUCTIVITY SLOPE VALUE= F5.4')

READ(9,27)BETA
27 FORMAT(F5.4)
C
C INITIALIZE THE BOUNDRY CONDITIONS
C

V( )=O.
V(N)=0.
NI=N-I
DO 30 I=2,Nl

30 V(I)=lO0.
C
C CALL EXP FIN DIF FOR INFINITE HEAT TRANSFER COEFFICENT
C
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CALL EFDIHC(N,NTOT,TSIV,T,KR,BETA)
STOP
END

C *
C SUBROUTINE EFDIHC

SUBROUTINE EFDIHC(N,NTOT,TSI,V,T,KR,BETA)
C
C FOR INFINITE HEAT TRANSFER COEFFICENT

IMPLICIT REAL*8(A-H,O-Z)
REAL*8 VT(100) ,V(100) ,M(100),P(100)
REAL*8 KR
Nl=N-1

C
C BEGIN TIME STEP LOOP
C

DO 20 L=1,NTOT
C
C CALCULATE DEPENDENT VARIABLE
C

DO 40 I=2,N1
Irll=I-1

DERSQR=DABS(V(IP1 )-V(IMI))
IF(DEP.SQR.LE.9.0)GO TO 40
VT(I)=VTCI)+TSI*((BETA*CDERSQR)**2. )/4.)

40 CONTINUE
C
C PRINT RESULTS
C

WRITE(6,5)
5 FORMAT(/)

WRITE( 6,31A)
31 FORMAT(lX,'TIME STEP HUMBER=',13/)

TIME=T*DFLOAT(L)
WRITE( 6,32 )TIME

32 FORIIAT(5X,'ELAPSED TIME=',FlO.4,'SECONDS'/)
DO 70 I=1,N

70 V(I)=VT(I)
WRITE( 6,81) (V(I) ,I=1 ,N)

81 FORMAT(LX,11(F9.5,2X))
20 CONTINUE

RETURN
END
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C
C
C SOURCE.IMPVAR
C

*C WRITTEN BY R.F. HANDSCHUH
C
C PROGRAM t6
C
C THIS ROUTINE IS TO BE USED FOR COMPARISION TO EXPONENTIAL
C FINITE DIFFERENCE ALGORITHM. THIS ROUTINE WILL USE THE
C IMPLICIT ROUTINE TO SOLVE FOR THE TEMPERATURE FIELD USING
C THE TRI-DIAGONAL MATRIX ALGORITHM.
C
C
C

IMPLICIT REAL*8 (A-H, O-Z)
REAL*8 V(100),KR

C
C INPUT PROGRAM DATA
C

WRITE(6, 15)
15 FORMAT(1X,'NUMBER OF NODES=N 13'/)

READ(9,1 )N
10 FORMAT(3)

WRITE(6,16)
16 FORMAT(IX,'TOTAL NUMBER OF TIM E STEPS= NTOT 13)

READ(9,21)NTOT
21 FORMAT(I3)

WRITE(6,24)
24 FORMAT(lX,'INPUT TIMETHERMAL DIFFUSIVITY / LENGTH SQUARED F5.3)

READ(9,25)TSI
25 FORMAT(F5.3)

WRITE(6,22)
22 FORMAT(1X,'TOTAL TIME OF ONE TIME STEP= T F7.5)

READ(6,23)TS
23 FORMAT(F7.5)

WRITE(6,14)
14 FORMAT(IX,'INPUT REFERENCE THERMAL CONDUCTIVITY=F5.4')

READ(9,17)KR
17 FORMAT(F5.4)

WRITE(6,26)
26 FORrAT(1X,'INPUT THERMAL CONDUCTIVITY SLOPE VALUE= F5.4')

READ(9,27)BETA
27 FORMAT(F5.4)

C
C INITIALIZE BOUNDRY CONDITIONS
C

V(1)=O.
V(N)=0.
NI=N-I
DO 30 I=2,Nl30 V(I)=IO0.

C
C CALL IMPLICIT ROUTINE

*u~q* -- -- ~ , - WI 'E* ~ ~~f \V\ %~'\~v 'I
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CALL IMPL(NPNTOT.TSIPVTSKR,BETA)
STOP
END

SUBROUTINE ITIPL

SUBROUTINE ITIPL(N, NTOT ,OMEGA ,T,TS, KR ,BETA)
C.

C FOR INFINITE HEAT TRANSFER COEFFICENT AND VARYING THERMAL CONDUCTIVITY
C

IMPLICIT REAL*8 (-, O-Z)

REAL*8 TO(10l)
REAL*8 KR

C
C PRINT HEADING
C

WRITE(6, 331)
331 FORMAT( lX, *** SOURCE. IMPVAR

RHOl .0
CP= . 0
Nl=N-l

C
C BEGIN TIME STEP LOOP
C

DO 20 L=1,NTOT
C
C CALCULATE THOMAS ALGORITHM VARIABLES AND THOSE THAT ARE A FUNCTION
C OF TEMPERATURE
C

DO 21 I=1,N
21 D(I)=T(I)

DO 200 I=1,N
200 TO(I)=T(I)

DO 25 1=2,H1
KAP(I)= . 0+BETA*T(I)

25 GAM(I)=BETA*(T(I+1)-T(I-1))/(4.)
C

DO 30 I=2,N1

B(I)=(1 .+2.*OMEGA*KAP(I))
30 C(I)=-OIEGA*(KAP(I)+GAM(I))

C
C CALL TRI-DIAGONAL-MATRIX ALGORITHM
C

CALL TRIDAG(2,N1 ,A,B,C,D,T)
C
60 CONTINUE
C
C PRINT THE RESULTS
C

WRITE(6,5)
5 FORMAT(/)
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WRITE(6,31)L
31 FORMAT(1X, 'TIME STEP NUMBER=',13/)

TIME=TS*DFLOAT (L)
WRITE(6 ,32)TIME

32 FORMAT(5X,'ELAPSED TIME=',FlO.4,'SECONDS'/)

81 FORMAT(lX,11(F9.5,2X))
20 CONTINUE

RETURN
END

C
C SUBROUTINE TRIDAG
C
C THIS ROUTINE IS FOR THE SOLUTION OF THE THOMAS ALGORITHM
C
C THIS ROUTINE WAS TAKEN FROM THE BOOK APPLIED NUMERICAL METHODS
C BY CARNAHAN, LUTHER, AND WILKES.
C

SUBROUTINE TRIDAG(IFLA,B,C,DDV)
IMPLICIT REAL*8CA-H,O-Z)
REAL*8 A(l0l) ,B(101),C(101),D(101),V(101),BETA(101),GAMMA(1o1)

C
C COMPUTE INTERMEDIATE ARRAYS BETA AND GAMMA
C

BETA(IF)=B(IF)
GAMMACIF)=D(IF)/BETA(IF)
IFP1=IF+ 1
DO 1 I=IFP1,L

1 GArMA(I)=(D(I)-A(I)*GAMMA(I-1))/BETA(I)
C
C COMPUTE FINAL SOLUTION VECTOR V
C

V(L)=GAMMA(L)
LAST=L-IF
DO 2 K=1,LAST
I=L-K

2 V(I)=GAMMA(I)-C(I)*V(I+1)/BETA(I)
RETURN
END
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C
C
C SOURCE.COUE
C
C WRITTEN BY R.F. HANDSCHUH
C
C PROGRAM #7
C
C THIS PROGRAM IS TO BE USED TO DEMIONSTRATE THE USE OF THE
C EXPONENTIAL FINITE DIFFERENCE METHOD ON THE DEVELOPING TEMPERATURE
C FIELD IN A LAMINAR COUETTE FLOW
C
C
C

IMPLICIT REAL*8 (A-H, 0Z)
REAL*8 V(100)

C
C INPUT PROGRAM DATA
C

WRITE(6, 15)
15 FORMAT(1X,'NUMBER OF NODES=N 131/)

READ(9,10)N
10 FORMAT(13)

WRITE(6, 12)
12 FORMAT(1X,'NUMBER OF SUB INTERVALS= NS 13')

READ(6,13)NS
13 FORMAT(1)

WRITE(6, 16)
16 FORrAT(1X,'TOTAL NUMBER OF POSITION STEPS= NTOT I3V)

READ( 9,21 )NTOT
21 FORMAT(13)

WRITE(6,24)
24 FORMAT( lX, INPUT (POSITION STEP*KIN. VISC)/(LENGTH SQUARED) F5.*3')

READ( 9, 25)TSI
25 FORMAT(F5.3)

WRITE(6 .22)
22 FORIIAT(lX,'TOTAL DISTANCE OF ONE STEP= T F5.3')

READ(6 ,23)T
23 FORMAT(F5.3)

WRITE(6. 14)
14 FORMAT(lX,'INPUT (MAX WIDTH)/(FLOW VEL) F5.4')

READ(6,17)SP
17 FORMAT(F5.4)

WRITE( 6,31)
31 FORMAT(1X,'INPUT INTERVAL FOR PRINTING RESULTS= I3')

READ( 6,32 )IPR
32 FORMAT(13)

C
C
C INITIALIZE THE BOUNDRY CONDITIONS
C

V( I)=O0
DO 30 I=2,N

30 V(I)=100.
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C
C CALL EXPONENTIAL FINITE DIFFERENCE FOR COUETTE FLOW
C

CALL EFFL(N,NS,NTOT,TSIV,T,SP,IPR)
STOP
END

C
C SUBROUTINE EFFL
C

SUBROUTINE EFFL(N,NS,NTOT,TSIV,T,SP.IPR)
C
C FOR COUETTE LAMINAR FLOW
C

IMPLICIT REAL*8(A-H,O-Z)
REAL*8 VT(100),V(100),M(100).P(100),FL(20)
TS=TSI/DFLOAT(NS+l)
NI=N-1

C
C PRINT HEADING
C

WRITE(6,92)
92 FORMAT(1X,'SOLUTION FOR DEVELOPING TEMPERATURE FIELD IN'

*'LAMINAR COUETTE FLOW'//)
DY=l./DFLOAT(N-1)

C
C CALCULATE PARAMETER THAT VARIES WITH POSITION IN THE FLOW
C

DO 115 I=2,N
115 FL(I)=SP/(DY*DFLOAT(I-1))

NSI=NS+l
C
C BEGIN TOTAL POSITION STEP LOOP
C

DO 20 L=I,NTOT
IT=IT+1

C
C ZERO THE SUM OF DRIVE NUMBERS
C

DO 15 I=1,14
15 P(I)=0.

C
C SET TEMPORARY VALUES EQUAL TO THE LAST POSITION STEP VALUE
C

DO 10 I=1,N
10 VT(I)=V(I)

C
C SUB POSITION INTERVAL
C

DO 30 K=1,NSI
C
C CALCULATE THE DRIVE NUMBERS
C

DO 40 I=2,N1
IMI=I-I
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C
C CALCULATE TEMIPORARY DEPENDENT VARIABLE ON SUB-INTERVAL
C

DO 50 11=2,Nl
50 VT(I1)=VT(I1)DEXP(-TS*l(I1)*FL(I1))

DO 60 I=2,Nl
60 P(I)=P(I)+Ml)
30 CONTINUE

C
C CALCULATE THE COMIPLETE STEP DEPENDENT VARIABLES
C

DO 70 I=1,N

70 CONTINUE
IF(IT.LT.IPR)GO TO 20

IT=.

C PRINT THE RESULTS
C

WRITE(6,5)
5 FORMAT(/)

WRITE(6,31)L
31 FORIIAT(lX, 'POSITON STEP NUMBER'l,13)

DIST=T*DFLOAT CL)
WRITE(6, 32)DIST

32 FORIIAT(5X, 'LOCATION DIST=',FlO.4..'IETERS')
WRITE(6,82)(V(I) ,I1 DN)

82 FORMAT(1X,11(F9.5,2X))
20 CONTINUE

RETURN
END
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C
C
C WRITTEN BY R. F. HANDSCHUH
C
C SOURCE.EX3D
C
C PROGRAM #8 *#**
C
C
C THIS ROUTINE IS FOR FINDING THE TEMPERATURE AT A GIVEN LOCATION
C AND TIME FOR A 3-DIMENSIONAL SOLID.
C
C THIS PROGRAM CALCULATES THE EXACT TEMP AS FOUND IN THE BOOK
C "TRANSPORT PHENOMENA" BY BIRD, STEWART, AND LIGHTFOOT.
C
C

IMPLICIT REAL*8(A-H,O-Z)
REAL*8 PIPI2,PI3
PI=3.1415926

C
C INPUT PROGRAM DATA
C

WRITE(1,31)
31 FORMAT(IX,'NUMBER OF NODES PER COORDINATE DIRECTION=I3')

READ(5,32)NODES
32 FORMAT(I3)

WRITE(1,1)
1 FORMAT(IX,'INPUT INITIAL TEMPERATURE FOR THE SOLID F6.3')

READ(5,2)TO
2 FORMAT(F6.3)

WRITE(1,3)
3 FORMAT(IX,'SURFACE TEMPERATURE FOR TIME > 0 SECONDS F6.3')

READ(5,4)TI
4 FORMAT(F6.3)

WRITE(1,5)
5 FORMAT(1X,'INPUT THERMAL DIFFUSIVITY F5.3')

READ(5,6)ALFA
6 FORMAT(F5.3)

C
C ASSUMING 3 DIM. CUBE
C

DATA A,B,C/1.0,1.0,1.0/
WRITE(1,9)

9 FORMAT(1X,'INPUT THE NUMBER OF TIMES THROUGH SUMMATION 13')
READ(5,11)NI

11 FORMAT(I3)
WRITE(1,12)

12 FORMAT(IX,'INPUT TIME TO BE EVALUATED AT F5.3')
READ(5,14)TIME

14 FORMAT(}5.3)
WRITE(6,20)TO,T1

20 FORMAT(IX,'TEMP INITIAL=',EI5.8,2X,'TEMP SURF=',E5.8/)
WRITE(6,30)ALFA,TIME

30 FORMAT(IX,'THER DIFF=',E15.8,2X,'TIME=',F7.5)
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C
C START SUMMATION ROUTINE
C

PI3=PI**3.
P12xPI**2.

C
C CALCULATE THE TEMPERATURE ALONG THE DIAGONAL
C

DEL=A/(DFLOAT(NODES-1))
C

DO 100 NODE=1,NODES
X=DEL*DFLOAT(NODE-1)
Y=x
Z=x
SUM 0.0
DO 10 K=1,N1
RP=DFLOAT(K-1)
RPI=RP+ .5
COSP=DCOS( RPI*PI*~Z/C)
DO 10 N=1,Nl
RN=DFLOAT(N-1)
RN1=RN+ .5
COSN=DCOS( RN1*PI*Y/B)
DO 10 M=1,Nl
RM=DFLOAT(Mr-i)
RM1=RM+ .5
COSM=DCOS(CRM1*PI*X/A)
J=M+H+K-3
J 1 J/2
J2=J1*2
VAL=-1 .0
IF(J.EQ.J2)VAL=1 .0
GAM=(RMI**2)/(A*A)+(RN12)/(*B)+(lP1**2)(C*C)
EXPLIM=(-GAM*PI2*ALFA*Tl1E)
IF(EXPLIM.LT.-100.)GO TO 999
EP=DEXP(EXPLIM)
GO TO 998

999 CONTINUE
EP=0.0

998 CONTINUE
SUM=SUM+ (VAL/( RM1*RNI*RP1*PI3) )*EP*COSM*COSN*COSP

10 CONTINUE
THEW=T1+8 .*(TO-T1 )*SUM

C
C PRINT THE RESULTS
C

bJRITE(6, 16)X,YZ
16 FORMAT(1X, 'X=' ,F5.3,2X, 'Y=' ,F5.3,2X, 'Z=' ,F5.3)

IF(Tt4EW.LT. 1E-10)TNEW=0 .0
WRITE(6 ,15)TNEW

15 FORMAT(lX,'TEMPERATURE=',El5.8)
100 CONTINUE

STOP
END
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C
C SOURCE.EFD3D
C
C WRITTEN BY R.F. HANDSCHUH
C
C PROGRAM #9 ***
C
C THIS PROGRAM IS FOR 3-DIMENSIONAL CARTESIAN COORDINATES
C UNSTEADY STATE HEAT TRANSFER IN A CUBE. THE METHOD OF SOLUTION IS THE
C EXPONENTIAL FINITE DIFFERENCE ALGORYTHM. THIS PARTICULAR PROGRAM IS
C FOR INFINITE HEAT TRANSFER COEFFICENT AT THE EXPOSED SURFACES
C AT X=Y=Z=1.0 FOR THE THREE SURFACES WHERE X,Y,Z EQUAL 0.0
C ARE TO BE CONSIDERED AS PERFECTLY INSULATED.
C
C

IMPLICIT REAL*8(A-H,O-Z)
REAL*8 V(25,25,25)

C
C INPUT PROGRAM DATA
C

WRITE(6o15)
15 FORMAT(1X,'NUMBER OF NODES=N 13'/)

READ(9,10)N
10 FORMAT(I3)

WRITE(6,12)
12 FORMAT(IX,'NUMBER OF TIME SUB INTERVALS = NS 13')

READ(9,13)NS
13 FORMAT(I3)

WRITE(6,16)
16 FORMAT(IX,'TOTAL NUMBER OF TIME STEPS= NTOT 13')

READ(9,21)NTOT
21 FORMAT(I3)

WRITE(6,24)
24 FORMAT(IX,'INPUT TIME*THERMAL DIFFUSIVITY / LENGTH SQUARED F5.3')

READ(9,25)TSI
25 FORMAT(F5.3)

WRITE(6,22)
22 FORMAT(IX,'TOTAL TIME OF ONE TIME STEP= T F6.4')

READ(9,23)T
23 FORMAT(F6.4)

WRITE(6,26)
26 FORMAT(1X,'NUMBER OF TIME STEPS BEFORE PRINTING= 13')

READ(9,27)IPR
27 FORMAT(I3)

WRITE(6,250)NNS,NTOT
250 FORMAT(IX,'# OF NODES=',I3,2X,'t OF SUB-TIME-INT=',I3,2X,

*'# OF TIME STEPS=',I3)
WRITE(6,251)TSI,T

251 FORMAT(iX,'(TIME*THER DIFF)/LENGTH SQUAREDn'F5.3,2X,
*'TIME STEP LENGTH=',F6.4/)
NI=N-1

C INITIALIZE BOUNDRY CONDITIONS
C

- -- -- - ----
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DO 30 11,.N1
DO 30 J=1,Nl
DO 30 K=1,Nl

30 V(I,J,K)=1.0
C

I=N
DO 50 J1I,N
DO 50 K=1,N

50 V(I,J,K)=O.0
J=N
DO 51 I=1,N
DO 51 K=1,N

51 V(I,J,K)=0.0
K=N
DO 52 11.NH
DO 52 J=1,N

52 V(I,J,K)=C.D
C
C CALL EXP FIN DIF FOR INFINITE HEAT TRANSFER COEFFICENT
C

CALL EFDIHC(N,t(S,NTOT,TSI,V,TIPR)
STOP
END

C
C SUBROUTINE EFDIHC
C

SUBROUTINE EFDIHC(NNS,NTOTTSI,VT,IPR)
C
C FOR INFINITE HEAT TRANSFER COEFFICENT
C

IMPLICIT REAL*8(A-H,O-Z)
REAL*8 VT(25,25,25) ,V(25,25,25) ,M(25,25,25),P(25,25,25)
REAL*B M11d12
TS=TSI/DFLOAT(NS+l)
N1=N-1
NS1=NS+1

C
C PRINT HEADING
C

bRITE(6,200)
200 FORMAT(1X,'****~**** RESULTS FROM EFD3D ***%*'/

C
C START TOTAL TIME STEP LOOP
C

DO 20 L=1,HTOT
C
C ZERO THE SUM OF THE SUB-INTERVAL DRIVE NUMBERS
C

DO 15 K=1,N
DO 15 J=1DN
DO 15 I=1,N

15 P(I,J,K)=0.
C
C SET SUB-INTERVAL VALUES EQUAL TO THE LAST TIME STEP VALUES
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C
DO 10 K=1,N
DO 10 J1DN
DO 10 I=1,N

10 VT(I.J,K)=V(I,J,K)
C
C SUB TIME INTERVAL
C
C CALCULATE THE DRIVE NUMBERS WHICH IS DEPENDENT ON LOCATION IN THE CUBE
C

Do 30 KS=1,NSI
Do 42 K=2,N1
KMI=K-1
KP1=K+l
DO 41 J=2,N1
JM1=J-1

DO 40 I=2,N1
Imlz1-1
IP1=1+1
M1=VT(IPI,J,K)*VT(IM1,.J,K)+VT(I,JPI,K)+VT(IJM1,K)
M2=M1+VT(I,J,KP1)+VT(I,J,KM1)-6.*VT(I,J,K)
IF(VT(I,J,K) .LE. 0.0)M(I,J.K)=0.
IF(VT(I,J,K).LE.0.0)GO TO 40

40 ONINUE)M/V(,J
41 CONTINUE
42 CONTINUE

C
C INSULATED BOUNDRY ALONG X-AXIS
C

J~1
K 1
KP1=K+1
JP1=J+1
DO 48 I=2,N1
IP1=I+1
Im1=I-1

IF(VT(IJ,K) .LE.0 .0)I(I,J,K)0C.
IF(VT(I,J,K).LE.0.0)GO TO 48

48 CONTINUE
C
C INSULATED BOUNDRY ALONG Y-AXIS
C

I=1

DO 43 J=2,N1
Jp1=J+1
JN1:,J-1
Ml=2.*VT(IP1,J,K)+VT(I,JP1,K)+VT(I,JM1,K)+2.*VT(I.J,KPl
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IF(VT(I,J,K) .LE. 0. OM(I,J,K)=0.
IF(VT(I,J,K).LE.0.0)GO TO 4.3

43 CONTINUE
C
C INSULATED BOUNDRY ALONG Z-AXIS
C

J~1

DO 4.4 K=2,Nl
Kill=K- 1
KP1=K~l
Ml=2.*VT(IP1,J,K)+2.*VT(I,JPl,K),V(I,J,KP)+VT(I,J,KI)
IF(VT(I,J,K).LE.0.0)tl(IJ,K)0O.
IF(VT(I,J,K).LE.0.O)GO TO'.'.
MCI,J,K)=(Ml-6.*VT(I,J,K))/VT(I,J,K)

4.4 CONTINUE
C
C INSULATED FACE AT Z0O
C

K~l
KP1=K+l
DO 4.5 I=2,Nl
IP1=I+1
IM11I-1
DO 4.5 J=2,Nl
JPl=J+l
JM1=J-1

IF(VT(I,J,K) .LE. 0.0 )t(I,J,K)=0.
IF(VT(I,J,K).LE.0.O)GO TO '.5

4.5 CONTINUE
C
C AT THE FACE WHERE Y=0
C

J1=1
Jpl=J+1
DO 46 I=2,N1
IP1=1+1
IMl=I-1
DO 46 K=2,N1
KPlRK+l
KM1=K-1
Ml=VT(IP1,J,K)+VT(IM1,J,K),2.*VT(I,JP1,K)+VT(I.J,KP1)+VTCI,J,KM1)
IF(VT(IJ,K) .LE. 0.0 )M(I,J,K)=0.
IF(VT(IJ,K).LE.O.O)GO TO 4.6

4.6 CONTINUE
C
C AT THE FACE WHERE X=0
C
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IPI=I+l
DO 4.7 J-2,Nl
JP1=.+l
JM1 =J- 1
DO 4.7 K=2,Nl
KPl=K+l
Kill K- 1

IF(VT(I,J,K) .LE.0 O)M(I,J,K)0O.
IF(VT(I,J,K).LE.O.0)GO TO 4.7

4.7 CONTINUE
C
C CORNER AT ORIGIN
C

Ml=2.*VT(l.2, lJ+2 .*VT(2, 1, l)+2.*VT(l,1,2)-6 .*VT(l, 1,1)
M( 1,1, 1 )=M/VT( 1,1,1)

C
C
C
C CALCULATE THE SUB-INTERVAL DEPENDENT VARIABLES
C

DO 50 111l,H
DO 50 Jl11,N
DO 50 K11I,N

IF(M(I1,Jl,K1).LT.-50)GO TO 50
VT(I1,Jl,Kl)=VT(Il,Jl,Kl)*DEXP(TS*l(Il,J1,Kl))

50 CONTINUE
C
C SUM THE DRIVE NUMBERS
C

DO 60 I=1,N
DO 60 J=1,N
DO 60 K=1,N

60 P(I,J,K)=P(I,J,K)+M(I,J,K)
30 CONTINUE

* C
*C CALCULATE THE NEXT COMPLETE TIME STEP DEPENDENT VARIABLES

C
* DO 70 K=1,N

DO 70 J=1,N
DO 70 I=1,H
IF(P(I,J,K).LT.-5OJ)V(I,J,K)=CO
IF(P(I,J,K).LT.-50.)G0 TO 70
V(I,J,K)=V(I,J,K)*DEXP(TS*PCI,J,K))

70 CONTINUE
ITIIAX=ITMAX+ 1
IF(ITrIAX.LT.IPR)GO TO 20

- WRITE(6,5)
5 FORMIAT(/)

WRITE( 6,31 )L
31 FORMAT(1X,'TIIE STEP NLMBER=',13/)
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TItlE=T*DFLOAT CL)
WRITEC 6.32 )TIME

32 FORIIATC5XELAPSED TIhE=',FlO.',,'SECOHDS'/)
C
C PRINT OUT THE DIAGONAL RESULTS
C

WRITE(6 ,82) CV(I,I,I) ,I1,N)
82 FORMAT(11(2X,F8.6))

ITMAX=0
20 CONTINUE

RETURN
END
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C
C SOURCE.EXPL3D

C WRITTEN BY R.F. HANDSCHUH
C
C ** ** PROGRAM #10 *4*C
C THIS PROGRAM IS FOR 3-DIMENSIONAL CARTESIAN COORDINATES
C UNSTEADY STATE HEAT TRANSFER IN A CUBE. THE METHOD OF SOLUTION IS THE
C PURE EXPLICIT METHOD. THIS PARTICULAR PROGRAM IS
C FOR INFINITE HEAT TRANSFER COEFFICENT AT THE EXPOSED SURFACES
C AT X=Y=Z=1.0 FOR THE THREE SURFACES WHERE X,YZ EQUAL 0.0
C IS TO BE CONSIDERED AS PERFECTLY INSULATED.
CC

IMPLICIT REAL*8(A-H,O-Z)
REAL*8 V(25,25,25)

C
C INPUT PROGRAM DATA
C
C NUMBER OF NODES = N
C

READ(5,10)N
10 FORMAT(I3)

C
C TOTAL NUMBER OF TIME STEPS = NTOT
C

READ(5,21)NTOT
21 FORMAT(I4)

C
C TIME*THERMAL DIFFUSIVITY/LENGTH SQUARED = TSI
C

READ(5,25)TSI
25 FORMAT(F5.3)

C
C TOTAL TIME OF ONE TIME STEP = T
C

READ(5,23)T
23 FORMAT(F6.4)
C
C NUMBER OF STEPS BEFORE PRINTING THE RESULTS = IPR
C

READ(5,27)IPR
27 FORMAT(I3)

WRITE(6,252)
252 FORMAT(IX,'****************** PURE EXLICIT FINITE DIFFERENCE ' -

"'METHOD ********* ***'///)
WRITE(6,250)N,NSNTOT

250 FORMAT(IX,'# OF NODES=',I3,2X,'t OF SUB-TIME-INT=',I3,2X,
*'# OF TIME STEPS=',I4)
WRITE(6,251)TSI,T

251 FORMAT(IX,'(TIME*THER DIFF)/LENGTH SQUARED='F5.3,2X,
"'TIME STEP LENGTH=',F6.4/)
N1=N-1

~V V
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C
C INITIALIZE BOUNDRY CONDITIONS
C

DO 30 I=1,Nl
DO 30 J=1,Hl
DO 30 K=1,Nl

30 V(I,J,K)=I.O
C

I:N
DO 50 J=l.N
DO 50 K=I,N

50 V(I.J,F:)=0.0
J=N
DO 51 1=,N
DO 51 K=1,N

51 V(IJ,K)=0.0
K=N
DO 52 I=1,N
DO 52 J=1,N

52 V(I,J,K)=0.0
C
C CALL PURE EXPLICIT FINITE DIFFERENCE FOR INFINITE HEAT TRANSFER COEFFICENT
C

CALL PURE(N,NTOT,TSI,V,T,IPR)
STOP
END

C
C SUBROUTINE PURE
C

SUBROUTINE PURE(N,NTOT,TSI,VT,IPR)
C
C PURE EXPLICIT FINITE DIFFERENCE METHOD
C FOR INFINITE HEAT TRANSFER COEFFICENT
C

IMPLICIT REAL*8(A-H,O-Z)
REAL*8 V(25,25,25),VT(25,25,25)
REAL*8 Ml,M2
N1=N-1

C
C START TIME STEP LOOP
C

DO 20 L=I,NTOT
C
C SAVE VALUES FROM THE LAST TIME STEP
C

DO 39 I=1,N
DO 39 J=1,N
DO 39 K=1,N

39 VT(I,J,K)=V(I,J,K)
C
C CALCULATE THE FIELD VARIABLE USING THE EXPLICIT FINITE DIFFERENCE METHOD
C

DO 42 K=2,N1
KM1=K-1
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KPI=K+l
DO 41 J=2,N1

DO 4.0 1=2,Nl
I11I-1
IP1=I+1
Ml1VT(IPI,JK)+VT(I1,J,K)+VT(I,JPI,K)+VT(I,Jil,K)
112=t1+VT(I,J,KP1)+VT(I,J,K~l)-6.*VT(I,J,K)

40 ONINUE=(IJK+TIM
41 CONTINUE
42 CONTINUE
C
C INSULATED BOUNDRY ALONG X-AXIS
C

J= 1
K=l
KPI=K+l

DO 48 I=2,N1
IP1=I41
Ih1=I-1
M1=VT(IPI,J,K)+VT(IY11,JK)+2A*VT(I,JP1,K)+2.*VT(I,J,KPl)
t12=t1-6 .*VT(I,J,K)
VI-J K) =V(I,JK) +TSI*r12

48 CONTINUE
C
C INSULATED BOUNDRY ALONG Y-AXIS
C

I=1
IP1=I+1
K=1
KP1=K+l
DO 43 J=2,Nl
Jp1zj+1
Jt11=J-1
Ml=2.*VT(IP1 ,J,K)+VT(I,JP1,K)+VT(I,JMll K)+2.*VT(I,J,KP1)
M2=Ml-6.*VT(I,J,K)
V(I,J,K)=V(I,J,K)+TSI*12

43 CONTINUE

C INSULATED BOUNDRY ALONG Z-AXIS
C

J=1
Jp1=J+1
I=1
IP1=1+1
DO 44 K=2,Nl

M=2 .*VT(IP1 ,J,K)+2.*VT(I,JP1 ,K)fVT(I,J,KP1)+VT(I,J,KM1)
M2=Ml-6 .*VT(I,3,K)
V(I,J,K)=V(I,J,K)+TSI*M2
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44 CONTINUE

C INSULATED FACE AT Z0O

K 1
KPI=K+1
DO 45 1=2,N1
Ip1=I+1
1111=I-1
DO 45 J=2,N1

M2=M1-6.*VT(I,J,K)
V(I.3, K)=V(I,J, K) +TSI*112

45 CONTINUE
C
C AT THE FACE WHERE Y=O
C

J=1
JPlJ+1
DO 46 I=2,N1
IP1=I+1
Irii~i-i
DO 46 K=2,N1
KP1=K+1
KM1=K-1

46 CONTINUE
C
C AT THE FACE WHERE X=0
C

1=1
IP1=I+1
DO 47 J=2,N1
Jp1=j+1
JMIf=J-1
DO 47 K=2,N1
KP1=K+l
KM1=K-l

t12=Ml-6.*VT(I,J,K)
V(I,J,K)=V(I,J,K)+TSI*12

47 CONTINUE
C
C CORNER AT ORIGIN
C

V( 1,1,1 )=V( 1,1,1 )+ril*TSI
C
C

ITriAX~ITIAX+ 1



IF(ITMAX.LT.IPR)GO TO 20
WRITE(6,5)

5 FORMIAT(/)
WRITE(6,31)L

31 FORMAT(lX,'TIhE STEP HUTIER'I,13/)
TIME=T*DFLOAT( L)
WRITE(6,32 )TIME

32 FORtIAT(5XDELAPSED TIMEI',FlO.4,'SECONDS'/)
C
C PRINT OUT THE DIAGONAL RESULTS
C

WRITE(6,82)(V(I,I,I) ,I=1,N)
82 FORMAT(11(2X,F8.6))

ITIAXZ 0
20 CONTINUE

RETURN
END



110

C
C SOURCE.DOUGLA
Cc
C WRITTEN BY R.F. HANDSCHUH
C
C PROGRAM *11 **
C
C THIS PROGRAM IS FOR 3-DIMENSIONAL CARTESIAN COORDINATES
C UNSTEADY STATE HEAT TRANSFER IN A CUBE. THE METHOD OF SOLUTION IS THE
r tlETHOD OF DOUGLAS. THIS PARTILJLAR PROGRAM IS
C FOR INFINITE HEAT TRANSFER COEFFICENT AT THE EXPOSED SURFACES
C AT X=Y=Z=1.0 FOR THE THREE SURFACES WHERE X,Y,Z EQUAL 0.0
C IS TO BE CONSIDERED AS PERFECTLY INSULATED.
C
C

IMPLICIT REAL*8(A-H,O-Z)
REAL*8 T(25,25,25)

C
C INFUT PROGRAM DATA
C

WRITE(6,15)
15 FORMAT(IX,'NUMBER OF NODES=N 13'/)

READ(5,10)N
10 FORMAT(I3)

WRITE(6,16)
16 . FORMAT(1X,'TOTAL NUMBER OF TIME STEPS= NTOT I3')

READ(5,21)NTOT
21 FORMAT(I3)

WRITE(6,24)
24 FORMAT(1X,'INPUT TIME*THERMAL DIFFUSIVITY / LENGTH SQUARED F5.3')

READ(5,25)TSI
25 FORMAT(F5.3)

WRITE(6,22)
22 FORMAT(1X,'TOTAL TIME OF ONE TIME STEP= T F6.4')

READ(5,23)DT
23 FORMAT(F6.4)

WRITE(6,26)
26 :"ORMAT(IX,'NUMBER OF TIME STEPS BEFORE PRINTING= I3')

READ(5,27)IPR
27 FORMAT(13)

WRITE(6,250)N,NS,MTOT
250 FORMAT(1X,'# OF NODES:',I3,2X,'# OF SUB-TIME-INT=',13,2X,

*'# OF TIME STEPS=',I3)
WRITE(6,251)TSI,DT

251 FOPMAT(1X,'(TIME*THER DIFF)/LENGTH SQUARED='F5.3,2X,
*'TIME STEP LENGTH=',F6.4/)
N1:N-I

C
C INITIALIZE BOUNDRY CONDITIONS
C

DO 30 I=1,Nl
DO 30 J:1,NI
DO 30 K=1,Nl



30 T(I,J,K)=1.0
C

I=H
DO 50 J=1,N
DO 50 K=I,N

50 T(I,JK)=0.0
J=N
DO 51 I=1,N
DO 51 K=1,N

51 T(IJ,K)=0.0
K=N
DO 52 I=l,N
DO 52 J=I,N52 T(I,J,K):0.0

C
CALL DG(N,NS,NTOT,TSI,T,DTIPR)
';TOP
END

C
C SUBROUTINE DG
C

SUBROUTINE DG(N,NS,NTOT,TSI,T,DT,IPR)
C
C FOR INFINITE HEAT TRANSFER COEFFICENT
C

IMPLICIT REAL*8(A-H,O-Z)
REAL*8 U(25,25,25),V(25,25,25)oM(25,25,25),T(25,25,25)
REAL*8 TEMP(25),A(25),B(25),C(25),D(25)
REAL*8 M1,M2
N1=N-1

C
C PRINT OUT HEADING
C

WRITE(6,200)
200 FORMAT(lX,'********* RESULTS FROM METHOD OF DOUGLAS , -

C
C CALCULATE COEFFICENTS FOR THOMAS ALGORITHM C TRI-DIAGONAL MATRIX SOLVER)
C

A(1)=O.O
B(1)=I.+TSI
C(1)=-TSI
DO 60 I=2,N
A(I)=-.5*TSI
B(I)=l.+TSI

60 C(I)=A(I)
C
C BEGIN TIME STEP LOOP
C

DO 20 L=1,NTOT
C
C CALCULATE TEMPORARY VARIABLES "U" - X DIRECTION, ""V" - Y DIRECTION,
C THEN ACTUAL FIELD VARIABLE "T" - Z DIRECTION.

'C
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Do 120 LOOP=1,3
DO 4.2 K=2,N1
DO 41 J=2,Nl
DO 40 I=2,M1
IF(LOOP.EQ.2)GO TO 140
IF(LOOP.EQ.3)GO TO 141
DELX=T(I+1 DJDK)+T(I-1,J,K)-2.*T(I,J,K)
DELY=T(I,q7,Kj)+T(I,J-,Kl)-2.*T(I,J,K)

l(I,J,K)=T(I,J7,K)+TSI*(.5*DELX+DELY+DELZ)
GO TO 40

140 CONTINUE
DELU=U(I+1,J,K)+U(I-1,J,K)-2.*U(I,J,K)

M(I,J,K)11(I,J,K)+.5*TSI*CDELU-DELY)
GO TO 40

141 CONTINUE

DELZ=T(I,J,K+1 )+T(I,JK-1 )-2.*T(I,J,K)
r(I,J,K)=rl(I,J,K)+ .5*TSI*(DELV-DELZ)

40 CONTINUE
41 CONTINUE
42 CONTINUE

C
C INSULATED BOUNDRY ALONG X-AXIS
C

K= 1
KP1=K+1

DO 48 I=2,N1

IF(LOOP.EQ.2)GO TO 148
IF(LOOP.EQ.3)GO TO 248

M(IJK)=T(I,J,K)+TSI*(M+12)
GO TO 48

148 CONTINUE

M(IJ,K)=t1(I,J,K)+.5*TSI*(DELU-DELY)
GO TO 4.8

248 CONTINUE
DELV=2.*V(I,3+1,K)-2.*V(I,J,K)

48 CONTINIUE
C
C INSULATED BOUNDRY ALONG Y-AXIS
C

K~l
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KP1=K+l
DO 43 J=2,Nl
JP1=j+1
Jt11zj-1
IF(LOOP.EQ.2)GO TO 143
IF(LOOP.EQ.3)GO TO 243

t(IJ,K)=T(I,J,K)+TSIWMI
GO TO 43

143 CONTINUE

?1CI,J,K)=r(I,3,K)+ .5*TSI*4(DELU-DELY)
GO TO 43

243 CONTINUE

43 CONTINUE
C
C INSULATED BOUNDRY ALONG Z-AXIS
C

J3=1

I=1
IP1=I41
DO 44 K=2,Nl
P:Ml=K-1
PKP1=K+l
IF(LOOP.EQ.2)GO TO 144
IFCLOOP.EQ.3)GO TO 244

t(I,J,K)=T(I,J,K)+TSI*11
GO TO 44

144 CONTINUE

?1CI,J,K)=M2
GO TO 44

244 CONTINUE

T(I,J,K)=I(I,J,K)+.5*TSI*(2.*(V(I.JP1,K)-V(I,J,K))-DELZ)
44 CONTINUE

C
C INSULATED FACE AT Z0O
C

K1=
KPI=K+1
DO 45 I-2,N1
IP1=I+1
ITI1=I-1
Do 45 J=2,Nl
JP1=J+1

IF(LOOP.EQ.2)GO TO 145
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IF(LOOP.EQ.3)GO TO 245

11(I,J,K)=T(I,J,K)+TSI*(11+2)
GO TO 45

145 CONTINUE

DELY=T(I,J+1 .K)+T(I,J-1 ,K)-2.*T(I,J,K)
I1(I,J,K)=rl(IJ,K)+ .5*TSI*(DELU-DELY)
GO TO 45

245 CONTINUE

I(I,J,K)=f(I,,K)+.5*TSI*(DELV-2.*(T(I.J,KPl)-TIJK)
45 CONTINUE

C
C AT THE FACE WHERE Y=0
C

J= 1
JP1J*
DO 46 1=2,N1
Ip1=I+1
nIm=I-1
DO 46 K=2,Nl
k:pi K+1
KMI1:K-1
IF(LOOP.EQ.2)GO TO 146
IF(LOOP.EQ.3)GO TO 246
M1 .5*(T(IP1 ,J,K)+T(flhl,J,K)-2.*T(I,J,K))

M(IJ,K)=T(I,J,K)+TSI*(Mfl*12)
GO TO 46

146 CONTINUE

GO TO 46
246 CONTINUE

46 CONTINUE
C
C AT THE FACE WHERE X0O
C

IP1=1+l
DOQ 47 J=,N

JM1 J- 1
DO 47 ir=2,N1

Kmrl *.- I
IF(LOOP.EQ.2)GO TO 147
IF(LOOP.EQ.3)GO TO 247
M1=T(IP1,J,K)+T(I,JP1,K)+T(I,J,KP1)+T(I,J,KI1)+T(I,JM1,K)

M "4 p, ) T I,',.'V SI'(M %'%*T%%,, N N



GO TO 47
147 CONTINUE

DELY=T(I,J41,K)+T(I,J-1,K)-2.*T(I,J,K)

GO TO 47
247 CONTINUE

DELV=V(I,J+1,K)+V(I,J-1,K)-2.*V(I,J,K)
DELZ=T(I,J,K+l )+T(I,J,K-1 )-2.*T(I,J,K)
M(I,J,K)=M(I,J,K)+.5*TSI*(DELV-DELZ)

47 CONTINUE

CORNER AT ORIGIN

IF(LOOP.EQ.2) GO TO 151
IF(LOOP.EQ.3)GO TO 251

l( 1,1,1 )=T( 1,1,1 )+TSI*M1
GO TO 51

151 CONTINUE
ML=1( 1 *1,1)

M( 1,1,1 )=M2
GO TO 51

251 CONTINUE
MI =M( 1, 1 ,1)

nC 1,1,1 )=M2
51 CONTINUE

C
C

IF(LOOP.EQ.2)GO TO 130
IF(LOOP.EQ.3)GO TO 230

C
DO 70 K=1,N1
DO 70 J=l,Nl
DO 30 I=1,N1

30 D(I)=M(I,Jdr)
C
C CALL TRI DIAGONAL MATRIX ALGORITHM
C

CALL TRIDAG(1,N1,A,B,C,.TEMP)

DO 430 1:1,111
430 U(I,J,K)=TEMP(I)

C
70 CONTINUE

GO TO 330
130 CONTINUE

DO 71 K=1,NL
DO 71 T-1,NI
DO 72 J=l.N1

72 D(J)=M(I,J,iK)
C

CALL TRIDAG( 1,Nl .AB.C,D,TEMP)



C
DO 472 J1,Nl

472 V(I,J,K)=TEMP(J)
C
71 CONTINUE

GO TO 330
230 CONTINUE

DO 73 I=1,Nl
DO 73 J=l,Nl
DO 74 Kl,ll

C
CALL TRIDAG(1,N1,A,B.C,DTEMP)

C
DO 474 I~,Nl

474 T(I,J,.)=TEIP(K)
C
73 CONTINUE
330 CONTINUE
120 CONTINUE

ITMAX=ITMAX+ 1
* IF(ITMAX.LT.IPR)GO TO 20
* WRITE(6,5)

5 FORMAT(/)
WRITE(6,91)L

91 FORrIAT(1X,'TIME STEP NUBER=',13/)
TItlE=DT*DP'LOAT( L)
I4RITE( 6, 32)TIME

32 FORMAT(5X,'ELAPSED TIMEI,F1O.4.'SECONDS'/)
C
C PRINT OUT THE DIAGONAL RESULTS
C

WRITE(6,82)(T(I,I,VI) ,1,N)
82 FORMAT(11(2X,F8.6))

ITr'A=O
20 CONTINUE

RETURN
END

*C
*C SUBROUTINE TRIDAG

C
SUBROUTINE TRIDAG(IF.L. A,B,C,DV)

* IMPLICIT REAL*8(A-H,O-Z)
REAL*8 A(25) ,B(25) ,C(25) ,D(25) ,V(25) ,BETA(25) ,GAMMA(25)

C
C COMPUTE INTERMEDIATE ARRAYS BETTA AND GAMMA
C

BETA%'IF)=B(IF)
GAMMA(IF)=D(IF)/EETA(IF)
IFP1=IF+l
DO 1 I=IFP1,L
BETA(I)=B(I)-A(I)*C(I-1 )/BETA(I-1)

1 GAMtA(I)=(D(I)-A(I)*GAMMA(I-1) )/BETA(I)
C
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C COMPUTE FINAL SOLUTION VECTOR V
C

V(L)=GAMMA(L)
LAST=L-IF
DO 2 K=1,LAST
I=L-K

2 V(I)=GAMYIA(I)-C(I)*V(I+1)/BETA(I)
RETURN
END
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C
C WRITTEN BY R.F. HANDSCHUH
C
C SOURCE.BURGER
c
C PROGRAM #12 I**
C
C THIS PROGRAMI IS FOR THE SOLUTION OF BURGER'S EQUATION
C BY THE EXPONENTIAL FINITE DIFFERENCE METHOD.
C
C

IMPLICIT REAL*8 (A-H, O-Z)
REAL*8 VC100)

C
C READ IN DATA TO BE USED IN THE SOLUTION
C

WRITE(6 .15)
15 FORIIAT(1XD'NUMBER OF NODESNM 131/)

READ('9,10)N
10 FORMAT(13)

WRITE(6, 12)
:2 FORIIAT(1X,'UMBER OF TIME SUB INTERVALS= NS I3')

READ(9, 13)NS
13 FORMAT(13)

WRITE(l.6
16 FORMAT(1X,'TOTAL NUMBER OF TIME STEPS= NTOT 13')

P.EAD( 9,21 )NTOT
21 FORTIAT(I3)

WRITE(6,24)
24 FORMAT(1XINPUT TIME / LENGTH SQUARED F5.3')

READ(9.25)TSI
25 FORMAT(F5.3)

WRITE(6,26)
26 FORMAT(1X.'INPUT KINEMATIC VISCOSITY= F5.3')

READ(9,27 )RNU
27 FORMAT(F5.3)

WRITE(6,22)
22 FORIAT(1XTOTAL TIME OF ONE TIME STEP= T F5.3')

P.EADC 9,23)T
23 FORMAT(F5.3)

WRITEC 614
14 FORMAT(1XINPUT INUMBUR OF STEPS BETWEEN PR:NTS=I3')

READ(9, 17)IPR
17 FORMAT(13)

C
C DATA FOR INITIAL AND BOUNDRY CONDITIONS
c

V( 1)=0.
V(N)=1.
N1=N-1
DO 30 I=2,N1

30 V(I)=1.
C
C CALL EXPONETIAL FINITE DIFFERENCE FOR BURGER'S EQUATION
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C
CALL BURG(N,MS,NTOT,TSI,V,T,RNU,IPR)
STOP
END

* C
C SUBROUTINE BURG
C

SUBROUTINE BUPG(N,NS,NTOT,TSI,V,T,RMU,IPR)
C

IMPLICIT REAL*8 (A-l, O-Z)
REAL*8 VT(l00),V(100),rl(1oO),P(100) ,THE(100)
TS=TSI/DFLOAT(NS+l)
DX=1.0/DFLOAT(H-1)
NlrN-1

WRITE(6,900)
900 F0RFIAT(/'***** SOLUTION FOR BURGER EQUATION ~~/

C
C TOTAL TIME STEP LOOP
C
* DO 20 L=1,NTOT

ITMAX=IT1AX+ 1
C
C ZERO THE SUM OF DRIVE NUMBERS
C

DO 15 I=1,N
15 P(Ih=O.

C
C SET THE TETIPOARY FIELD VARIABLE EQUAL TO THE LAST TIME STEP VALUE
C

DO 10 I=1,N

C
r SZUB TIME INTERVAL

DO 30 KI=,NS1
C
C CALCULATE THE SUB-INTERVAL DRIVE NUMBERS
C

DO '40 I=2,X1
Ir11=I-1

IF(VTCI).LE.0.0)GO TO 40

M(I)=M(I)+RNU*(VT(IP1 )+VT(IM1)-2.*VT(I) )/VTCI)
40 CONTINUE

C
C CALCULATE THE SUB-INTERVAL DEPENDENT VARIABLES
C

DO 50 I112,N1
CHECV.=TS*M( Ii)
IF(CHECK.LE.-50. )VT(I1)=O.0
IF(CHiECK.LE.-50.)GO TO 50

r ~ t O*W MC NI- - IC .
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50 CONTINUE
C
C SUMI THE DRIVE NUMIBERS
C

DO 60 1=2,Nl
60 P(I)=P(I)+MI(I)
30 CONTINUE

C
C
C CALCULATE THE DEPENDENT VARIABLE AT THE NEXT COMIPLETE STEP
C

DO 70 11I,N
CHECK=TS*P( I)
IF(CLIECK.LE.-50.)V(I)=0.0
IF(UHECK.LE.-50.)GO TO 70

70 CONTINUE
C
C OUTPUT THE RESULTS
C

IF(ITTIAX.LT.IPR)GO TO 20
ITMAX=0
WRITE(6,5)

5 FORMAT(/)
WP.ITE(6,31)L

31 FOPRMAT(lX,'TIME STEP NUTBERz',13)
TfIET*DFLOAT CL)
WRITE(6, 32)TITIE

32 FORIIAT(5X,'ELAPSED T3ME=',F10.4,'SECOHDS')
ISTEP=(N-1 )/10
DO 110 11I,N

110 THECI)=1.0-V(I)
DO 80 J=1,ISTEP

IFIN=J*1 0 +1
WRITE(6 ,81 )(THE(I) ,I=S,IFIN)

81 FORMAT(1X,11(F8.6,2X))
80 CONTINUE
20 CONTINUE

RETURN
END

.... ..... t p S S t ~ S
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C
C WRITTEN BY R.F. HANDSCHUH
C
C SOURCE.EXBURG
C
C ***** PROGRAM #13 *
C
C THIS PROGRAM IS FOR THE SOLUTION OF BURGER'S EQUATION USING AN EXPLICIT
C TECHNIQUE. THE RESULTS WILL BE USED TO COMPARE TO THE EXPONENTIAL
C FINITE DIFFERENCE TECHNIQUE.
C
C

IMPLICIT REAL*8(A-H,O-Z)
REAL*8 V(100)

C
C INPUT PROGRAM DATA
C

WRITE(6,15)
15 FORMAT(IX,'NUMBER OF NODES=N 13'/)

READ(9, 10)N
10 FORMAT(I3)

WRITE(6,16)
16 FORMAT(lX,'TOTAL NUMBER OF TIME STEPS= NTOT 13')

READ(9,21)NTOT
21 FORMAT(I3)

WRITE(6,24)
2. FORMAT(1X,'INPUT TIME / LENGTH SQUARED F5.3')

READ(9,25)TSI
25 FORMAT(F5.3)

WRITE(6 ,26)
26 FORMAT(1X,'INPUT KINEMATIC VISCOSITY= F5.3')

READ(9,27)RNU
27 FORMAT(F5.3)

WRITE(6,22)
22 FORMAT(1X,'TOTAL TIME OF ONE TIME STEP= T F5.3')

READ(9,23)T
23 FORMAT(F5.3)

WRITE(6, 1)
14 FORMAT(1X,'INPUT NUMBER OF STEPS BETWEEN PRINTS=I3')

READ(9,17)IPR
17 FORMAT(I3)

C
C INITIALIZE THE BOUNDRY CONDITIONS
C

V(1)=1.
V(N)=O.
N1=N-1
DO 30 I=2,Nl

30 V(I)=O.
C
C CALL EXPLICIT FINITE DIFFERENCE SOLUTION FOR BURGER'S EQUATION
C

CALL BURG(N,NTOT,TSI,V,T,RNU,IPR)
STOP
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END
C
C SUBROUTINE BURG
r

SUBROUTINE BURG(NNTOT,TSI,V,T,RNU,IPR)
C
C

IMIPLICIT REAL*8 CA-H, O-Z)
REAL*8 VT(l00),V(100),THE(l00)

C
C PRINT HEADING
C

WRITE(6, 999)
999 FORIIAT(1X,'**** EXPLICIT BURGER S EQT SOLUTION *'/

DX=1.0/DFLOAT(N-1)
N1=N-l

C
C TIMlE STEP LOOP
C

DO 20 L=1,NTOT
ITMAX=ITIIAX '1

C
c SAVE LAST TIMlE STEP VALUES
C

DO 10 I=1,N
10 VT(I)=V(I)

C
C EVALUATE EXPLICIT FINITE DIFFERENCE EQUATION
C

DO 40 I=2,N1
IM 1 I-1
IP1=I+1

40 CONTINUE
C
C WRITE OUT THE RESULTS
C

!F(ITtIAX.LT.IPR)GO TO 20
ITMAX=0
WRITE(6,5)

5 FORIIAT(/)
WRITE(6, 31 )L

31 FORUlATC1X,'TI1 E STEP NUTBER'I,I3)
TIME=T*DFLOAT(L)
WRITE( 6,32 )TIME

32 FORMAT(5X, 'ELAPSED TIfIE=',F1O.4, 'SECONDS')
ISTEP=(N-1 )/10
DO 110 I=1,N

110 TH!ECI)=V(I)
DO 80 3=1,ISTEP

IFIN=.1*1 0+1
WRITE(6,81 )(THE(I) ,115,IFIN)



81 FORTIAT(1X,11(F8.6,2X))
80 CONTINUE
20 CONTINUE

RETURN
* END
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C
C SOURCE.NONBOU
C
C WRITTEN BY R.F. HANDSCHUH
C
C PROGRAMI *14 A**
C
C THIS PROGRAM IS USED FOR THE SOLUTION OF THE BOUNDRY LAYER FLOW
C OVER A FLAT PLATE. THE DIRECTION OF FLOW IS IN THE X-DIRECTION
C WHICH IS USED AS THE MARCHING DIRECTION FOR THE EXPONENTIAL FINITE
C DIFFERENCE ALGORITHM. THE THERMAL AND VELOCITY BOUNDRY LAYERS
C CAN BE EXTRACTED FROM THE TEMPERATURE AND VELOCITY FIELDS FOUND.
C
C
C

IMPLICIT REAL*8 C-, O-Z)
REAL*8 U(101),T(I01),V(101)

C
C INPUT PROGRAM DATA
C

WRITE(6, 15)
15 FORMAT(1X,'NUIIBER OF NODES IN Y DIRC=N 13'/)

READ(9,10)N
10 FORMAT(I3)

WRITE(6, 12)
12 FORMAT(1X,'NUMBER OF SUB INTERVALS= HS 13')

READ(9, 13)NS
'3 FORMAT(13)

WRITE(6,16)
16 FORMAT(1XP'TOTAL NUMBER OF X-DIR STEPS: NTOT 13')

READ(9,21)NTOT
21 FOP.MAT(13

WP.ITE(6 ,24)
24 FORMAT(lX,'INPUT STEP LENGTH F5.3')

READ( 9,25 )DX
25 FORMAT(F5.3)

WRITE(6,26)
26 FORMAT( iX, 'NUMBER OF STEPS BEFORE PRINTING: 13')

READ( 9,27 )IPR
27 FORMAT(I3)

WRITE(6, 110)
110 FORMAT( iX, 'INPUT KINEMATIC VISCOSITY= F6 .4')

READ(9,111) RNU
II1 FORMAT(F6.4)

WRITE(6, 101)
101 FORMAT(1X,'INPUT THERMAL DIFFUSIVITY F6.4')

READ(9, 102)RAL
102 FORtIAT(F6.4)

WRITE(6,103)
103 FORIAT(1X,'INPUT YMAX F5.1')

READ(9,104) YMAX
104 FORMAT(F5.1)

WRITE(6 ,250 )N,NS,NTOT
250 FORMAT(1X,'# OF NODES=',I3,2X,'* OF SUB-INT'I,13,2X,
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'*OF TIME STEPS'I,13)
RN=DFLOAT (N-1) 1

DY=YMAX/RN
WRITE(6,251)DX,DY

251 FORMAT(lX,'DX=',F8.4,2X,'DY=',F8.4/)
WRITE(6 ,252)RNU,RAL

252 FORMAT(1X, 'KINEMATIC VISCOSITY=' ,F6.4, 'CY1*CM/S' ,2X,
*'THERMAL DIFFUSIVITY=' ,F6 .4, 'CM*CM/Sl)

C
C INITIALIZE BOUNDRY CONDITIONS
C

DO 30 J=2,N
U(J)=1 .0
V(J)=0 .0

30 T(J)=1.0
C

U( 11=0.0
T(1 )O. 0

C
C

CALL NON1(HNSHTOT,RNUU,V,T,IPR,DX,DYRAL)
STOP
END

C
c

SUBROUTINE NON1(N,NSNTOT,RNUU,V,TIPR,DX,DYRAL)

IMPLICIT REAL*8(AC, 0-Z)
REAL*8 U(101),MU(10l) ,V(101),T(101),IIT(101)
REAL*8 PU(l0l) ,PT(101),UT(101) ,TT(101) ,VT(101)
REAL*8 THE(101,1000,3),UT1(101)

C
C PRINT HEADING
C 6

WRITE(6 ,5)
WRITEC 6,222)

222 FORMAT(1X, '***** SOURCE.NONBOU W***'/
WRITEC 6,223)

223 FORtAT(/,1X,'SOLUTION FOR BOUNDRY LAYER FLOW PAST A FLAT PLATE,/)
C

DY2=DY*DY
T:=DX*RAL/(DY2*DFLOAT(NS+1))
TSI=DX*RNU/(DY2*DFLOAT(NS+1))
DEL=DX/DFLOAT(NS+l)
N l =N-1
tlS1=HS+1
NSTEP=(H-1 )/10

C BEGIN TOTAL INTERVAL LOOP FOR L1l TO NTOT STEPS

DO 20 L=1.NTo'r
C
C ZERO THE SUM OF DRIVE NUMBERS FOR THE NEXT SET OF SUB-POSITION INTERVALS
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C
DO 15 11I,N
PU(I)G. 0

15 PT(I)=0.0
C
C SAVE LAST POSITION STEP VALUES FOR TEMIPORARY VARIABLE CALCULATIONS
C ON SUB-POSITION INTERVAL
C

DO 10 11I,N
VT(I)zV(I)
UT(I)=U(I)

10 TT(I)=T(I)
C
C SUB - POSITION INTERVAL
C

DO 30 K1I,NS1
C
C CALCULATE TEMIPERATURE FIELD DRIVE HUMIBER
C

DO 41 J=2,N1
Jm1~j-1
jp1=j+1
?T(J)=-VT(J)*(TT(JP1 )-TT(Jtl) )*DY/(2 .*RAL*UT(J)*TT(J))
MT(J)=MT(J)+(TT(JP1),TT(Jfl1)-2.*TT(J))/(UT(J)*TT(J))

41 CONTINUE
C
C CALCULATE X - DIRECTION VELOCITY DRIVE HUMIBER
C

DO 141 J=2,Nl
3m1~j-1
3P1=.j+1
rU(J)=-.5*VT(J)*DY*(UT(JP1)-UT(J!11))/(RHU*UT(J)*UT(J))

141 CONTINUE
C
C CALCULATE TEMIPERATURE, X-DIRECTION VELOCITY, AND Y-DIRECTION VELOCITY
C ON THE SUB-POSITION INTERVAL
C

DO 50 I112,N1
50 TT(Il)=TT(I1)*DEXP(TS*Q1T(I1))

C
DO 51 I=2,N1
UT1(I)=UT(l)

51 UT(I)=UT(I)*DEXPTS*lUCI))

DO 65 J=2,N1
JMIl=J- 1
VT(J)=VT(J11)-.5*CDY/DEL)*(UT(J)-UT1(J)+UTJI1)-UT1(jI11))

65 CONTINUE
C
C SUM THE DRIVE NUMBERS
C

DO 60 J=2,N1
PU(J)=PU(J)+MU(J)
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*60 PT(J)=PT(J)+MT(J)
30 CONTINUE

C
C CALCULATE THE NEXT TOTAL POSITION STEP VALUES OF VELOCITIES AND TEMPERATURE

DO 70 J=1,N
UT(J)=U(J)
U(J)=UCJ)*DEXP(TS1*PU(J))
T(J)=T(J)*DEXP(TS*PT(J))

70 CONTINUE
C

DO 75 J=2,Nl
JML:J-1

C
ITMAX=ITMAX+ 1

C
C SAVE THE VALUES FOUND IN 3-DIMENSIONAL ARRAY "THE"
C

DO 76 J=1,N
THE(J,L, 1)=U(J)
THE(J,L,2)=V(J)

76 THE(J,L,3)=T(J)
IF(ITMAX.LT.IPR)GO TO 20

C WRITE OUT THE RESULTS AT THE REQUESTED INTERVAL OF POSITION
C

WRITE(6,5)
5 FORMAT(/)

WRITE(6,31)L
31 FORMAT(5X9 'POSITION STEP NUMBER=',13)

TSTEP=DX*DFLOAT (L)
WRITE(6,32)TSTEP

32 FORMAT(5X,'X-POSITION=',F10.4/)
WRITE(6, 101)

101 FORMAT(1X,'THE U VELOCITY COMPONENT')
DO 300 KK=1,NSTEP
IS=(KK-1 )*11+1
IFIN=KP:*1 O4KK
WRITE(6,82)(THE(I,L,1) ,I=ISIFIN)

300 CONTINUE
82 FORMAT(11(2X,F8.5))

WRiITE(6, 102)
102 FORIIAT(1X,'THE V VELOCITY COMPONENT')

DO 301 KK=1,NSTEP

IFIN=KK*10+KK

301 CONTINUEI
103 FORMAT(1X,'THE T FIELD VARIABLE '

DO 302 KK=1,NSTEP

IFIN=KK*10+KK

Z Yzzw~yz~o q
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WRITE(6,82)(THE(I,L,3),I=IS,IFIN)
302 CONTINUE

ITMAX=O
20 CONTINUE

RETURN
END

(S

(S
V.
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